Helicity Asymmetry Measurement for π^0 Photoproduction on the CLAS Frozen Spin Target

Diane Schott, William Briscoe, Igor Strakovsky The George Washington University

For CLAS Collaboration

9/3/2015

- Single Pion photoproduction.
- Experimental Facilities at JLab Hall B.

- CLAS.

Photon Tagger.

- Circular polarized beam.

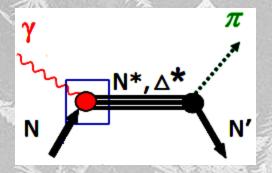
Linearly polarized beam.

- FROST.

• The Experiment.

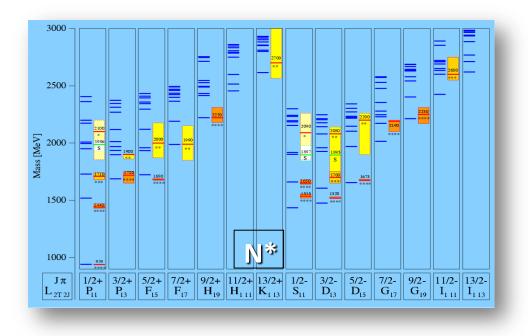
• Double Polarized measurements for $\gamma p \rightarrow \pi^0 p$.

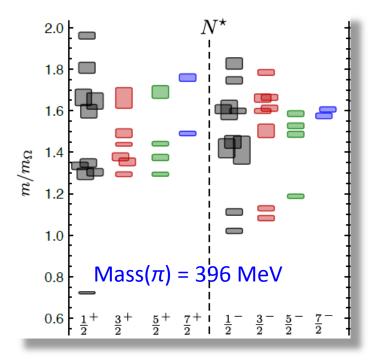
• Summary.



Hadron 2015, Newport News, VA, Sept 2015

Igor Strakovsky


Status of Non-strange Resonances: PDG14


GWSAI	<u>GW SAID Contribution</u>													K.A. Olive <i>et al</i> (PDG) Chin Phys C 38 , 090001 (01 (20	14)		
l = 1/2		/				tatus	as s	een ii	1 —		More than half of states have poor evidence .											3		
1-1/2	Status										 Most of QCD models predict more states than observed. 												5%	
Particle J^P	overa	$1 \pi N$		$N\eta$	Νη Νσ Ν			ΣK	Νρ	$\Delta \pi$	Where are missing resonances?													
$N = 1/2^+$	****	Y									1 2/2					0						=	10	
$N(1440) 1/2^+$	****	****	****		***				*	***	I = 3/2					51	atus	as se	en in	. —			this	
$N(1520) 3/2^{-}$	****	****	****	***					***	***			Statu										for	
$N(1535) 1/2^{-}$	****	****	****	****					**	*	Particle J^P	overal	$1 \pi N$	γN	$N\eta$	Nσ	$N\omega$	ΛK	ΣK	Νρ	$\Delta \pi$			
$N(1650) 1/2^{-}$	****	****	***	***			***	**	**	***	$\Delta(1232) 3/2^+$	****	****	****	F							-	evidence	
$N(1675) 5/2^{-1}$	****	****	***	*			*		*	***	$\Delta(1600) 3/2^+$	***	***	***	0					*	***		ide	
$N(1680) 5/2^+$	****	****	****	*	**				***	***	$\Delta(1620) 1/2^{-1}$	****	****	***		r				***	***			
N(1685) ??	*										$\Delta(1700) 3/2^{-1}$	****	****	****		ь				**	***		ou	
$N(1700) 3/2^{-}$	***	***	**	*			*	*	*	***	$\Delta(1750) 1/2^+$	*	*			i								
$N(1710) 1/2^+$ $N(1720) 3/2^+$	***	***	***	*** *	**	* ***	**	*	**	$\Delta(1900) 1/2^{-1}$	**	**	**			d		**	**	**		finds		
$N(1720) 3/2^+$ $N(1860) 5/2^+$	****	****	***	***			**	**	**	*	$\Delta(1905) 5/2^+$	****	****	****			d		***	**	**		(90	
$N(1800) 3/2^{-1}$ $N(1875) 3/2^{-1}$	***		***		سد جو	***	-	•	*	$\Delta(1910) 1/2^+$	****	****	**			e		*	*	**				
N(1873)3/2 $N(1880)1/2^+$	**	1	*		**	**	***	**		***	$\Delta(1920) 3/2^+$	***	***	**				n	***		**		(ARNDT	
$N(1895) 1/2^{-}$	**	1	**	**	**		**	*			$\Delta(1930) 5/2^{-1}$	***	***										Z	
$N(1900) 3/2^+$	***	**	***	**		**	***	**	*	**	$\Delta(1940) 3/2^{-1}$	**	*	**	F				(see	n in	$\Delta \eta$)		AF	
$N(1990) 7/2^+$	**	**	**					*			$\Delta(1950) 7/2^+$	****	****	****	0				***	*	***			
$N(2000) 5/2^+$	**	*	**	**			**	*	**		$\Delta(2000) 5/2^+$	**				r					**		ysi	
N(2040) 3/2+	*										$\Delta(2150) 1/2^{-1}$	*	*			ь							analysis	
$N(2060) 5/2^{-1}$	**	**	**	*				**			$\Delta(2200) 7/2^{-}$	*	*			i								
$N(2100) 1/2^+$	*										$\Delta(2300) 9/2^+$	**	**			\mathbf{X}	d						GWU	
$N(2150) 3/2^{-}$	**	**	**	201	*		**			**	$\Delta(2350) 5/2^{-1}$	*	*				d			• . •	c		6	
$N(2190) 7/2^{-}$	****	****	***	26 N			**		*		$\Delta(2390) 7/2^+$	*	*	22	Δ*	B	nG	<u>a A</u>	.dd1	tio	nal		ie ist	i l
$N(2220) 9/2^+$	****	****		11 *		•					$\Delta(2400) 9/2^{-1}$	**	**	7 *	***		Ŭ	n		04	400	~	anc	
$N(2250) 9/2^{-}$	****	****		5	***						$\Delta(2420) 11/2^+$	****	****	3 *					5	<u>Sta</u>	tes		The latest resonance.	;
$N(2600) 11/2^{-1}$	\mathbf{A}	***		7	**						$\Delta(2750) \ 13/2^{-1}$	*	**										res Th	
$N(2700) 13/2^+$		**		3							$\Delta(2950) 15/2^+$	11	**	7 *										-
				5										<mark>5</mark> *	¢	-						-		STUNGTON
	Newport New	wport News, VA, Sept 2015						Igor Strakovsky 3																
											• -	-, ,						Contraction of the second s						

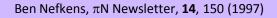
data group

particle

Baryon Resonance Spectrum

- Masses, widths, and coupling constants not well known for many resonances.
- Most models predict more resonance states than observed.

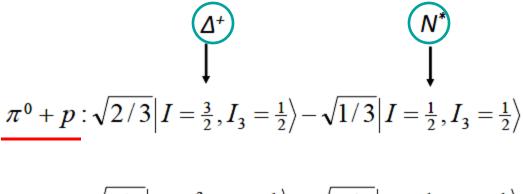
R.G. Edwards et al. Phys Rev D 84, 074508 (2011)


Baryon Resonances

- The three light quarks can arranged in 6 baryonic families, N*, Δ *, Λ *, Σ *, Ξ *, and Ω *.
- The number of family members that can exist is not arbitrary.
- Rather, the following proportionally is expected when the SU(3)_F symmetry of QCD is the controlling symmetry:

2 N*, **1**
$$\Delta$$
*, **3** Λ *, **3** Σ *, **3** Ξ *, and **1** Ω *

- The number of experimentally identified resonances of each baryon family is
 26 N*, 22 Δ* and so on.
- **Constituent quark** models predict the existence of no less than 64 N* and 22 Δ^* states with mass < 3 GeV².
- The seriousness of the ``missing-states" problem is obvious from these numbers.
- Recently, the **hypothesis** of a very small πN coupling of missing states should await the results of more realistic, coupled-channel calculations.

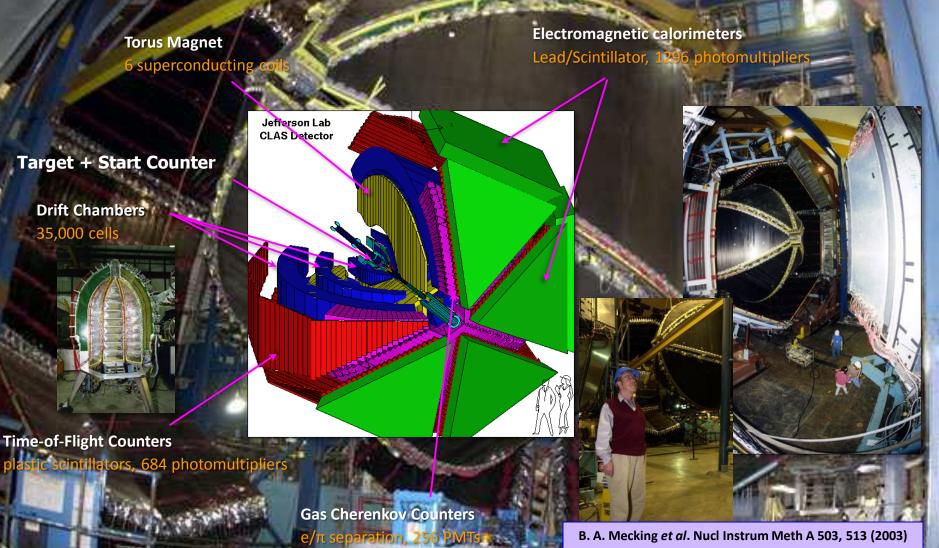


Isospin Combinations for Reactions involving π^0 and π^+

• Differing isospin for N^{*} and Δ^+ for $\pi^0 p$ and $\pi^+ n$ states.

• The $\pi^0 \mathbf{p}$ and $\pi^+ \mathbf{n}$ final states can help distinguish between the Δ^+ and \mathbf{N}^* .

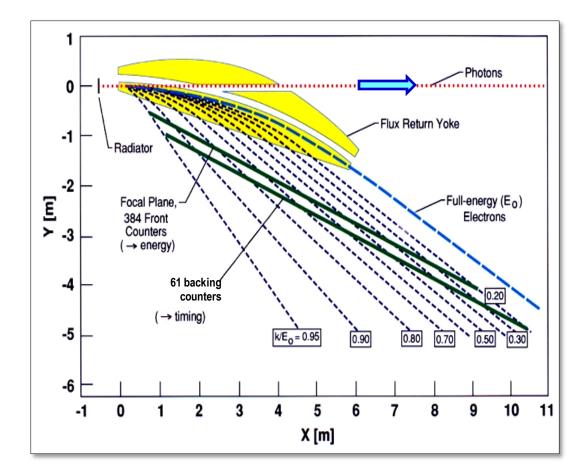
$$\pi^+ + n : \sqrt{1/3} \left| I = \frac{3}{2}, I_3 = \frac{1}{2} \right\rangle + \sqrt{2/3} \left| I = \frac{1}{2}, I_3 = \frac{1}{2} \right\rangle$$



class

9/3/2015

CEBAF Large Acceptance Spectromet 1997-2012


B. A. Mecking et al. Nucl Instrum Meth A 503, 513 (2003)

Hadron 2015, Newport News, VA, Sept 2015

9/3/2015

Igor Strakovsky

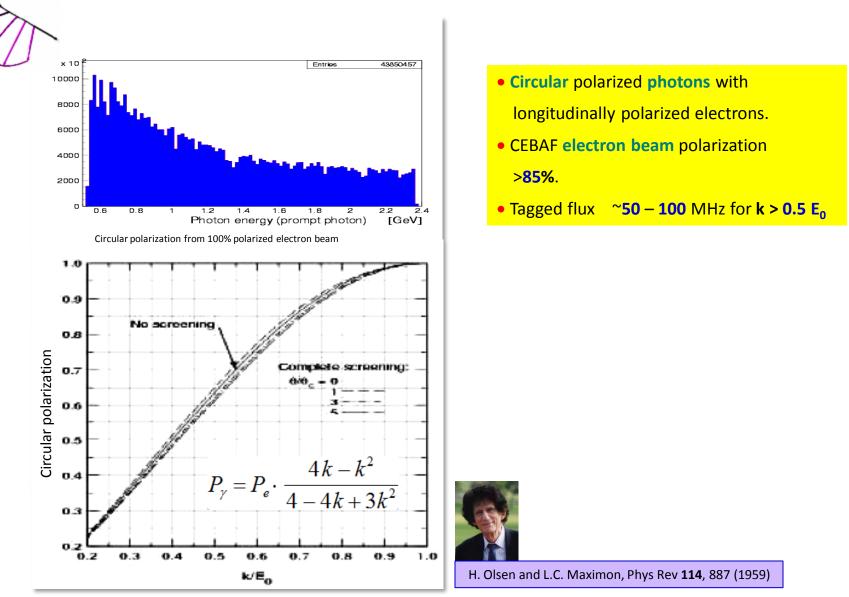
Hall B Photon Tagger

JLab Hall BBremsstrahlungPhoton Tagger had: $e_{\gamma} = (0.20-0.95) \times E_0$ e_{γ} up to ~5.8 GeV $\Delta E/E \sim 10^{-3} \times E_0$ Circular polarizedphotons withlongitudinally polarizedelectrons.

 Oriented diamond crystal for linearly polarized photons.

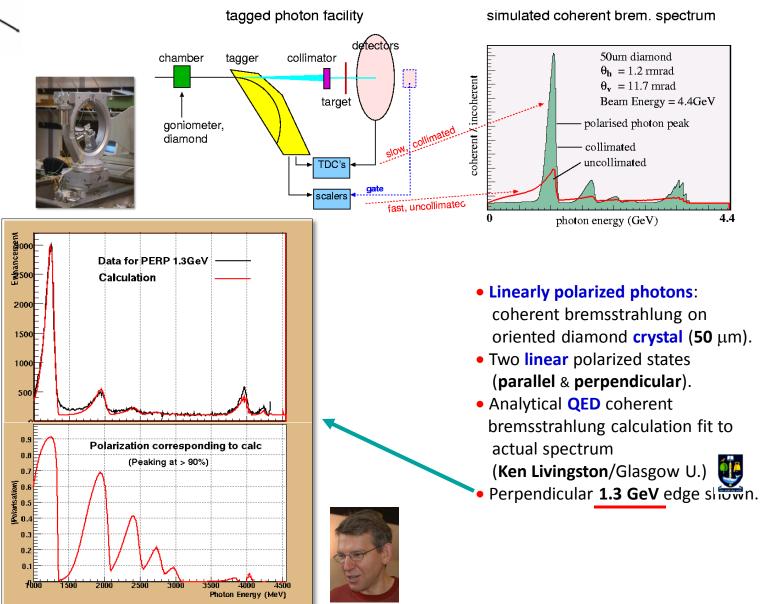
D. Sober et al. Nucl Instrum Meth A 440, 263 (2000)

• Tagger was built by the GW, CUA, and ASU nuclear physics groups.

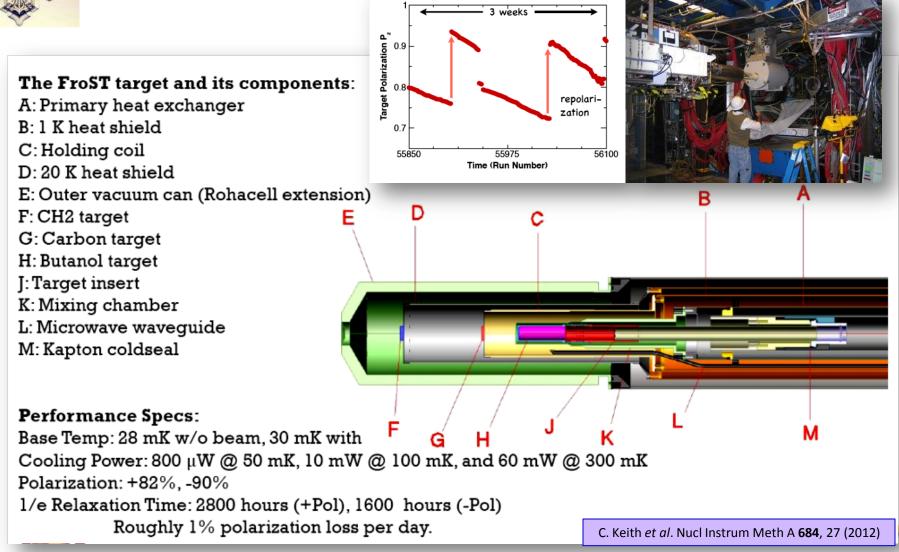


Hadron 2015, Newport News, VA, Sept 2015

ASU RIZONA STATE


Circular Photon Beam Polarization

Linearly Polarized Photons


Hadron 2015, Newport News, VA, Sept 2015

Igor Strakovsky 11

FroST Target

The Experiment

Battle Plan for Observables

		,	Targe	t		Recoi	1		Target + Recoil										
Beam				<i>x'</i>	у'	<i>z</i> '	<i>x</i> '	<i>x</i> '	<i>x</i> '	<i>y</i> ,	у,	у'	<i>z</i> '	<i>z</i> '	<i>z</i> '				
		x	y	z			•	x	у	z	x	у	z	x	у	z			
unpolarized	$d\sigma_0$		T			P		$T_{x'}$		$L_{x'}$		Σ		<i>T</i> _z ,		L_{z} ,			
$P_L^{\gamma}\sin(2\varphi_{\gamma})$	1	H		G	$O_{x'}$		0 _z ,		<i>C</i> _{<i>z</i>} ,		E		F		<i>-C_x</i> ,				
$P_L^{\gamma}\cos(2\varphi_{\gamma})$	Σ		-P			-T		<i>-L_x</i> ,	· · · · · · · · · · · · · · · · · · ·	<i>T</i> _z ,		$-d\sigma_0$		$L_{x'}$		- <i>T</i> _x			
circular P_c^{γ}	$d\sigma_0$	F		(-E	C_{x} ,		<i>C</i> _z ,		-0 _z ,		G		-H		<i>O</i> _{<i>x</i>} ,				

Photon beam

Unpolarized

Linearly polarized

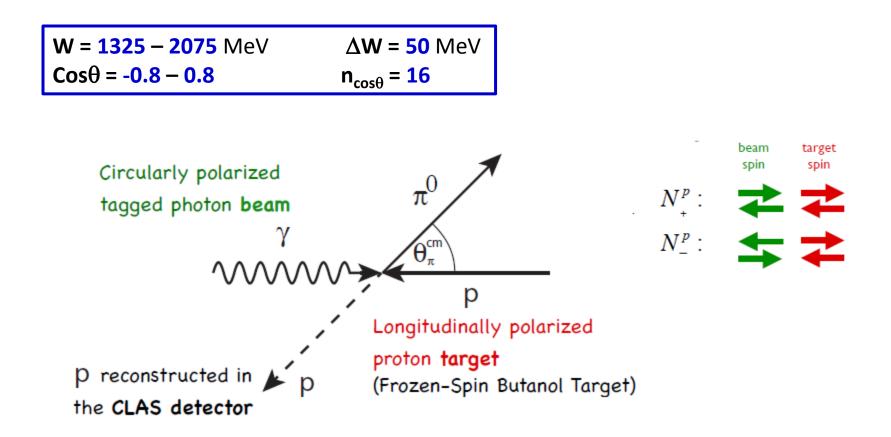
Circularly polarized

9/3/2015

Lorenzo Zana (6D2)

Hadron 2015, Newport News, VA, Sept 2015

g9a


Nov '07 to Feb '08

0

g9b

F

The Experiment

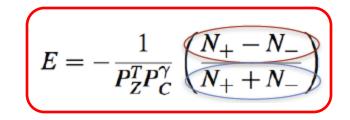
Polarized cross section

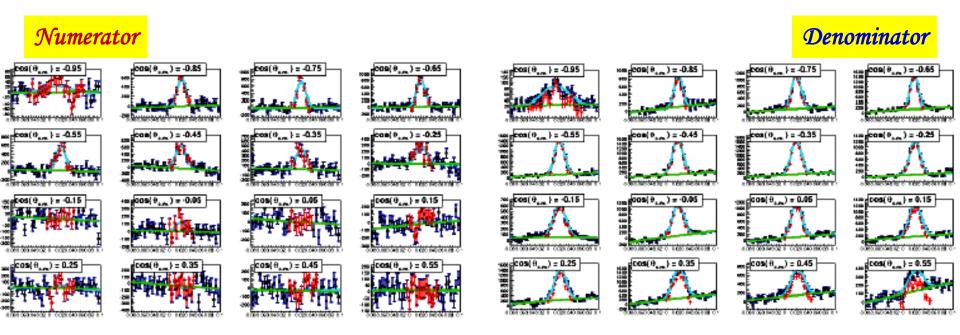
$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{0} \left(1 - P_{z}P_{\odot}E\right)$$

Maximum likelihood estimator

$$\hat{E} = -\frac{1}{P_z P_{\odot}} \left(\frac{N_+^p - N_-^p}{N_+^p + N_-^p} \right)$$

Courtesy of Steffen Strauch




clc

9/3/2015

• Gaussian + polynomial to fit **peak**, yield is 2σ

• W = 1475 MeV.

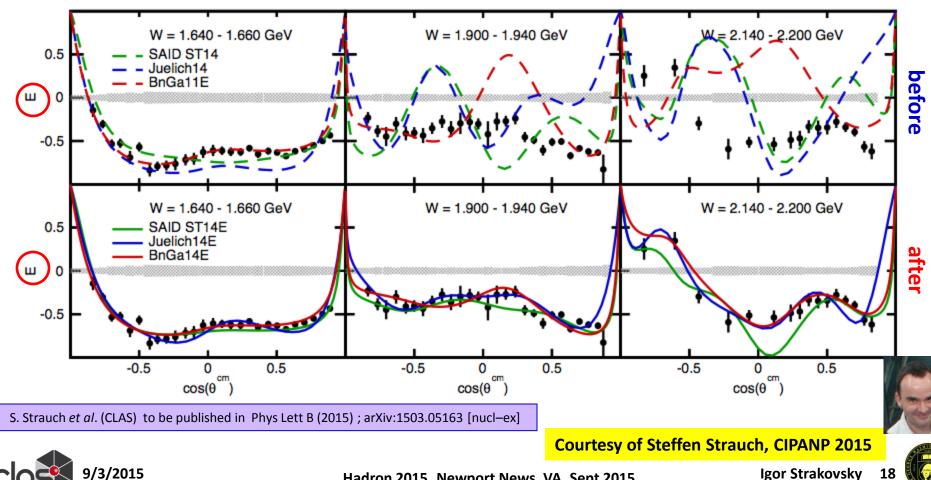
Yields

Seminar des SFB 1044, Kernphysik, Mainz, Germany, Aug 2015

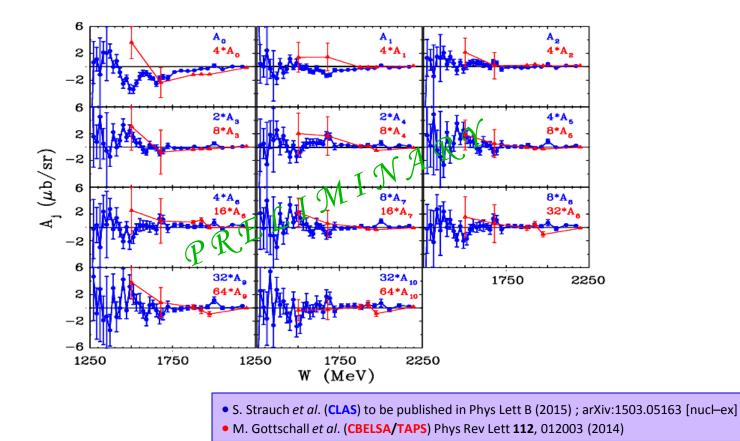
Double Polarization Observable \mathbf{E} for π^+n

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{0} \left(1 - P_{z}P_{\odot}E\right)$$

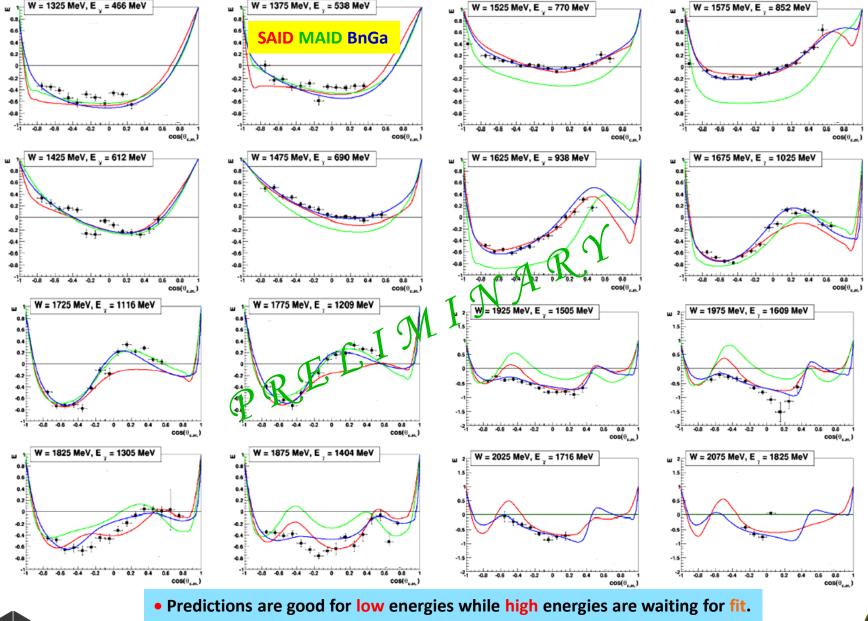
CIC


W = 1240 - 2260 MeV $-0.9 \leq \cos(\theta_r^{cm}) \leq +0.9$

$$\vec{\gamma}\,\vec{p}\to\pi^+n$$



W = 2170 MeV


Legendre Polynomial Fit

- Beyond the **SAID PWA**, we plan the Legendre analysis for CLAS E measurements for both $\gamma p \rightarrow \pi^+ p$ and $\gamma p \rightarrow \pi^0 p$ as we did recently for the CLAS Σ data M. Dugger *et al.* (CLAS) Phys Rev C **88**, 065203 (2013).
- Unfortunately, recent **CBELSA** E for $\gamma p \rightarrow \pi^0 p$ is insufficient for that because of so broad energy binning ($\Delta W = 300 500$ MeV).

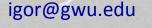
Double Polarization Observable \mathbf{E} for $\pi^0 p$

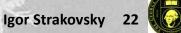
CO 9/3/2015

Summary

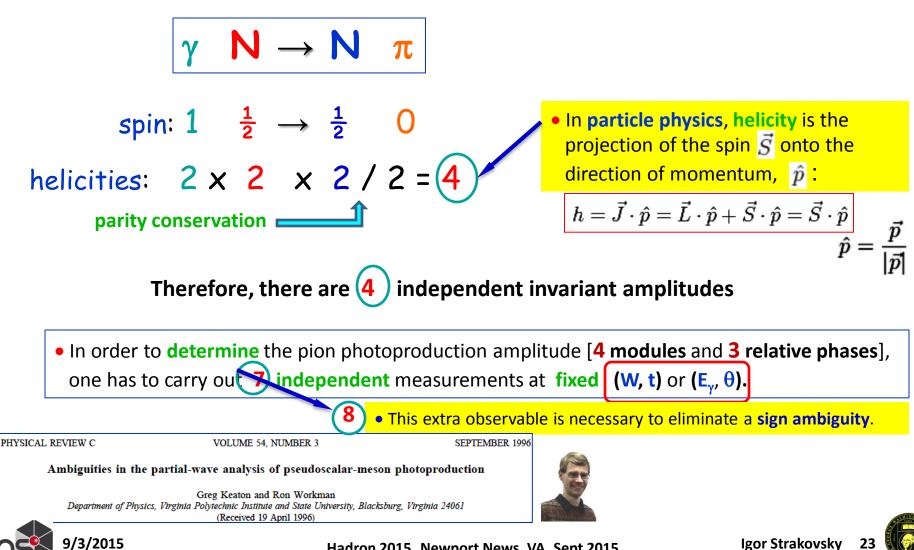
- Spin observables will tremendously aid in determining resonance parameters and finding ``missing resonances" (if they exist).
- Photon experiments in Hall B with FroST at JLab have acquired hundreds of data points unprecedented statistical quality and covering many reactions.
- For most reaction channels, we will have data sufficient for a nearly complete experiments.
- Evidence of **new states** found in **coupled-channel** analyses.
- Data for some reactions and some observables are nearing the publication stage, but much work remains.
- High level analysis tools (SAID, MAID, Juelich, BnGa) are in great demand.

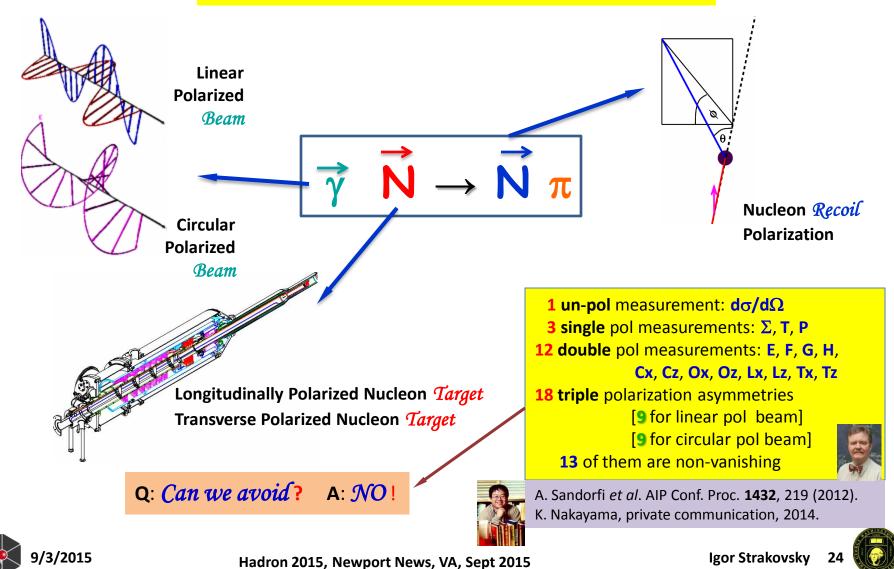
/3/2015




Thank you for the invitation and your attention

Work in Progress




Direct Amplitude Reconstruction in Pion Photo Production

Complete Experiment in Pion PhotoProduction

• There are 16 non-redundant observables.

• They are not completely independent from each other.

