Photoproduction of eta-mesons in the presence of a narrow P<sub>11</sub>(1675) resonance

introduction

- the isobar model EtaMaid
- \* t-channel exchanges: poles vs. Regge trajectories
- $D_{15}(1675)$  resonance vs. narrow  $P_{11}(1675)$

summary

# $\eta$ - M A I D

## • EtaMaid 2001

W.-T Chiang C. Bennhold D. Drechsel L.T.

## ReggeMaid 2003

W.-T. Chiang M. Vanderhaeghen L.T.

EtaMaid 2006

 A. Fix
 M. Polyakov
 L.T.

Born terms in s- and u-channel ρ,ω pole terms in t-channel N\* resonances: D13(1520), S11(1535), S11(1650), D15(1675) F15(1680), D13(1700), P11(1710), P13(1720)

Born terms ρ,ω Regge trajectories N\* resonances: D13(1520), S11(1535), S11(1650), D15(1675)

Regge isobar model as ReggeMaid2003 with additional narrow P11(1675) resonance



## the Mainz-Dubna Unitary Isobar Model

 $t^{\alpha}_{\gamma,\pi} = v^{\alpha}_{\gamma,\pi}(Born + \omega, \rho) (1 + it^{\alpha}_{\pi,\pi})$ K-matrix unitarization  $+ t^{\alpha}_{\gamma,\pi}(Resonances) e^{i\Phi(W)}$ unitarization phase
determined by the Watson theorem, below  $2\pi$  threshold
relaxed above  $2\pi$  threshold



## uses a simpler approach without unitarization

$$t_{\gamma,\eta} = v_{\gamma,\eta}(Born + \omega, \rho) + t_{\gamma,\eta}(Resonances)$$

what is missing: influence of other coupled channels possibly:  $K\Lambda$ ,  $K\Sigma$ , ...

#### Born terms do not play an important role in eta production

 $g^2/4\pi \sim 0.1$ 

Vector meson exchanges of  $\omega, \rho$  in the t-channel can be treated in 2 different ways:

1. as t-channel poles (with additional form factors)

2. as Regge trajectories (giving rise to questions about duality and double counting)

#### Regge Trajectory Exchanges

At high *s* and low *t*, it is known that meson photoproduction can be well described by Regge trajectories in the *t*-channel.

Replace pole-like propagator

$$\mathbf{P}_{\text{pole}}^{V} = \frac{1}{t - m_{V}^{2}}$$

With Regge propagator

 $\mathbf{P}_{\text{Regge}}^{V} = \left(\frac{s}{s_0}\right)^{\alpha_{V}(t)-1} \frac{\pi \alpha_{V}'}{\sin(\alpha_{V}(t))} \frac{\mathbf{S}_{V} + e^{-i\pi\alpha_{V}(t)}}{2} \frac{1}{\Gamma(\alpha_{V}(t))}$ 

The idea is to economically take into account the exchanges of high-spin particles in the *t*-channel which cannot be neglected at higher energies



#### Resonances

#### **Breit-Wigner form**



$$\begin{pmatrix} E_{\ell\pm} \\ M_{\ell\pm} \end{pmatrix} = \begin{pmatrix} \tilde{E}_{\ell\pm} \\ \tilde{M}_{\ell\pm} \end{pmatrix} f_{\gamma N}(W) \frac{\Gamma_{tot} W_R}{W_R^2 - W^2 - iW_R \Gamma_{tot}} f_{\eta N}(W) C_{\eta N} \zeta_{\eta N}$$
isospin factor  $C_{\eta N} = -1$ 

$$f_{\eta N}(W) = \left[ \frac{1}{(2j+1)\pi} \frac{k}{|q|} \frac{m_N}{W_R} \frac{\Gamma_{\eta N}}{\Gamma_{tot}^2} \right]^{1/2}$$

$$\Gamma_{\eta N} = \beta_{\eta N} \Gamma_R \left( \frac{|q|}{|q_R|} \right)^{2\ell+1} \left( \frac{X^2 + q_R^2}{X^2 + q^2} \right)^{\ell} \frac{W_R}{W}$$

$$\Gamma_{tot} = \Gamma_{\eta N} + \Gamma_{\pi N} + \Gamma_{\pi \pi N}$$

$$f_{\gamma N}(W) = 1$$

8 resonances are included in  $\eta$ -MAID :

 $D_{13}(1520)$  very important  $S_{11}(1535)$  most important  $S_{11}(1650)$  very important  $D_{15}(1675)$  very important

F<sub>15</sub>(1680) less important D<sub>13</sub>(1700) unimportant P<sub>11</sub>(1710) important P<sub>13</sub>(1720) unimportant

 $\zeta_{\eta N} = \pm 1$  : hadronic phase

## Resonance Parameters from η-MAID 2001

proton neutron (PDG/SQTM **A**<sup>p</sup><sub>1/2</sub> **A**<sup>p</sup><sub>3/2</sub> **A**<sup>n</sup><sub>1/2</sub> **A**<sup>n</sup><sub>3/2</sub> **N**\* width  $\zeta_{\eta N}$ β<sub>ηN</sub> mass D<sub>13</sub>(1520) 0.06% 166 -135 1520 120 1 -52 -41 S<sub>11</sub>(1535) 1541 191 50.% 1 118 -97 S<sub>11</sub>(1650) 1638 114 8.% -1 **68** -56 D<sub>15</sub>(1675) 1665 150 -1 17.% 18 24 -43 -58 F<sub>15</sub>(1680) 1682 130 0.06% 1 -21 124 52 -41  $D_{13}(1700)$ 0.3% 1700 100 -1 -18 -2 -3 0 P<sub>11</sub>(1710) 1720 100 26.% -2 1 23 P<sub>13</sub>(1720) 1720 150 3.% -1 18 -19 -29 1

Numbers in red are fitted parameters: photo couplings are fitted in reasonable ranges strong  $\eta N$  coupling is more freely varied

#### Eta-Maid 2001 compared to data from TAPS@Mainz and GRAAL



The role of the  $D_{15}(1675)$  resonance





#### isobar model Eta-Maid2001



(preliminary data from CB-ELSA, I. Jaegle, priv. comm. 2006)

## problems with the $D_{15}(1675)$ resonance:

1) in the std EtaMaid model it fits the neutron data very well but needs a large branching ratio of  $\beta_{\eta N}$  = 17 % fits with SU(3)<sub>fl</sub> for baryon octett gives a prediction of  $\beta_{\eta N}$ = 2.5 %. (Guzey and Polyakov, hep-ph/0512355)

2) in the Regge model the  $D_{15}(1675)$  would not play any important role.

## comparison of our models:

proton PDG/Fit

#### neutron PDG

EtaMaid 2001

| N*                     | mass | width | β <sub>ηN</sub> | $ζ_η N$ | <b>A</b> <sup>p</sup> <sub>1/2</sub> | <b>A</b> <sup>p</sup> <sub>3/2</sub> | <b>A</b> <sup>n</sup> <sub>1/2</sub> | <b>A</b> <sup>n</sup> <sub>3/2</sub> |
|------------------------|------|-------|-----------------|---------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| D <sub>13</sub> (1520) | 1520 | 120   | 0.06%           | 1       | -52                                  | 166                                  | -41                                  | -135                                 |
| S <sub>11</sub> (1535) | 1541 | 191   | 50.%            | 1       | 118                                  | -                                    | -97                                  | -                                    |
| S <sub>11</sub> (1650) | 1638 | 114   | 8.%             | -1      | 68                                   | -                                    | -56                                  | -                                    |
| D <sub>15</sub> (1675) | 1665 | 150   | 17.%            | -1      | 18                                   | 24                                   | -43                                  | -58                                  |
| F <sub>15</sub> (1680) | 1682 | 130   | 0.06%           | 1       | -21                                  | 124                                  | 52                                   | -41                                  |
| D <sub>13</sub> (1700) | 1700 | 100   | 0.3%            | -1      | -18                                  | -2                                   | 0                                    | -3                                   |
| P <sub>11</sub> (1710) | 1720 | 100   | 26.%            | 1       | 23                                   | -                                    | -2                                   | -                                    |
| P <sub>13</sub> (1720) | 1720 | 150   | 3.%             | -1      | 18                                   | -19                                  | 1                                    | -29                                  |

ReggeMaid 2003

| <b>N</b> *             | mass | width | β <sub>ηN</sub> | $ζ_η N$ | <b>A</b> <sup>p</sup> <sub>1/2</sub> | <b>A</b> <sup>p</sup> <sub>3/2</sub> | <b>A</b> <sup>n</sup> <sub>1/2</sub> | <b>A</b> <sup>n</sup> <sub>3/2</sub> |
|------------------------|------|-------|-----------------|---------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| D <sub>13</sub> (1520) | 1520 | 120   | 0.04%           | 1       | -24                                  | 166                                  | -59                                  | -139                                 |
| S <sub>11</sub> (1535) | 1545 | 118   | 50.%            | 1       | 80                                   | -                                    | -65                                  | -                                    |
| S <sub>11</sub> (1650) | 1635 | 120   | 16.3%           | -1      | 46                                   | -                                    | -38                                  | -                                    |
| D <sub>15</sub> (1675) | 1665 | 150   | 0.69%           | 1       | 19                                   | 15                                   | -43                                  | -58                                  |
| F <sub>15</sub> (1680) | 1670 | 130   | 0.003%          | 1       | -15                                  | 133                                  | 29                                   | -33                                  |
| D <sub>13</sub> (1700) | 1700 | 100   | 0.025%          | -1      | -18                                  | -2                                   | 0                                    | -3                                   |
| P <sub>11</sub> (1710) | 1700 | 100   | 26.%            | -1      | 9                                    | -                                    | -2                                   | -                                    |
| P <sub>13</sub> (1720) | 1720 | 150   | 4.1%            | 1       | 18                                   | -19                                  | 1                                    | -29                                  |

## Pentaquark States

anti-decuplet in the chiral soliton model by Diakonov, Petrov and Polyakov (1997)



#### Estimate of Resonance Parameters for Non-Strange Partner of $\Theta^+$

Ya. Azimov, V. Kuznetsov, M.V. Polyakov and I. Strakovsky Eur. Phys. J. A 25 (2005) 325

triggered by the observation of an irregular behaviour of the cross section for  $\gamma n \rightarrow \eta n$  near  $W_{c.m.} = 1675$  MeV

| quantum numbers                   | $J^{\pi}$                      | : | $1/2^+ \Rightarrow P_{11}$      |
|-----------------------------------|--------------------------------|---|---------------------------------|
| mass                              | $M^*$                          | = | 1675 MeV                        |
| total width                       | $\Gamma_{tot}$                 | = | 10MeV                           |
| branching into $\eta N$ channel   | $\Gamma_{\eta N}/\Gamma_{tot}$ | = | 40%                             |
| neutron magnetic transition momen | t $ \mu(n^* \to n) $           | = | $(0.13 - 0.37)\mu_N$            |
| neutron photon coupling           | $A_{1/2}(n)$                   | = | $(20-60)  10^{-3} / \sqrt{GeV}$ |
| proton photon coupling A          | $A_{1/2}(p)/A_{1/2}(n)$        | < | 1/3                             |

in the following we use  $A_{1/2}(p)=8$  and  $A_{1/2}(n)=25$ 

## $\eta$ photoproduction on the neutron



## quasifree eta photoproduction on the deuteron in collaboration with Alexander Fix

(e.g. A. Fix and H. Arenhövel, Z. Phys. A 359 (1997) 427 )

in impulse approximation:

ηNN fsi is negligible NN fsi is larger but only important near threshold

input: EtaMaid with additional pentaquark state P<sub>11</sub>(1675)

## Photoproduction of $\eta$ mesons on the deuteron in the presence of a narrow $P_{11}(1670)$ resonance

A. Fix, L.T., and M.V. Polyakov, EPJ A32 (2007) 311

resonance parameters for the pentaquark in our calculations:





the proton data of Bartalini et al. does not show any pentaguark arrow structure !!

#### Beam Asymmetry $\Sigma$ in $\eta$ photoproduction on quasi-free neutrons

A. Fantini et al. (GRAAL), Phys. Rev. C78, 015203, 2008



# The effect of a narrow P11(1670) in the $2\pi$ and $K\Lambda$ channels

A. Fix, L.T., and M.V. Polyakov, EPJ A32 (2007) 311



## recent developments on the pentaguark

Evidence of the  $\Theta^+$ in the  $\gamma d \rightarrow K^+ K^- pn$  reaction

T. Nakano et al., arXiv:0812.1035

Narrow Nucleon N\*(1685) in the  $\gamma p \rightarrow \eta p$ 

V. Kuznetsov and M.V. Polyakov, JETP Lett. 88 (2008) 347 [arXiv:0807.3217]



#### Narrow Nucleon N\*(1685) in the $\gamma p \rightarrow \eta p$

#### our calculations



#### narrow resonance signals in recoil polarization



# $p(\gamma,\eta)p C_{x'}$



**D.** Watts, CB@MAMI  $O_x$ , T, P also  $p(\gamma, 2\pi)$  and  $p(\gamma, \pi\eta)$  channels

## Summary on $\eta$ production

- The old EtaMaid 2001 describes new data > 2002 very well
- D<sub>15</sub> resonance needs a very large ηN branching ratio, to describe the photon asymmetry on the proton this leads to the peak in σ(n)/σ(p) ds/dW is described very well, but it fails for S
- a non-strange narrow pentaquark state P<sub>11</sub>(1675) Fermi averaged in the deuteron would also produce such a peak with 1670 MeV < M\* < 1685 MeV</p>
- other observables which could show strong signals from narrow P11 resonances are: T, P, F, H, Cz