## Photoproduction of $\eta$ -mesons off the deuteron



#### electromagnetic excitation off the neutron

#### importance of measurements off the neutron:

- different resonance contributions
- needed for extraction of iso-spin composition of elm. couplings



• complications due to use of nuclear targets (deuteron):

- Fermi motion
- nuclear effects like FSI, re-scattering, coherent contributions

### $\pi^o\text{-mesons}$ in the $\Delta\text{-resonance}$ : coherent - breakup - FSI

#### large coherent cross section, strong FSI



- coherent part in good agreement with models (Kamalov et al. '97, Laget '81)
- Iarge FSI effects for breakup part
- agreement with model predictions reasonable

#### more recent models: better



TA P

- better control of FSI (most important: NN-FSI)
- Iarge FSI for neutral pions at forward angles



#### most simple qualitative interpretation: completeness relations

• systems with strong FSI: breakup cross sections no good estimate for free nucleon cross sections  $\pi_{1}$ 

 $N_2$ 

- coherent and breakup related via FSI:
- breakup + coherent  $\approx$  quasi-free without FSI



а

-N₁

 $N_2$ 

N۵

 $N_2$ 

b

 $N_2$ 

 $N_2$ 

С

 no complication from coherent process, no significant FSI efffects, more or less controllable Fermi motion effects



#### resonances coupling to $\eta$ photoproduction

branching ratios and elm. couplings (PDG):

state $b_{\eta}$  [%] $A^p_{1/2}$  $A^p_{3/2}$  $A^n_{1/2}$  $A^n_{3/2}$ • D<sub>13</sub>(1520):0.23±0.04-2416659139

-15

29

-33

133

- S<sub>11</sub>(1535): 30 55 90 -46
- S<sub>11</sub>(1650): 3 10 53 -15
- $D_{15}(1675)$ :  $0 \pm 1$  19 15 -43 -58
- $F_{15}(1680)$ :  $0 \pm 1$
- D<sub>13</sub>(1700): 0 ± 1
- P<sub>11</sub>(1710): 6.2±1.0
- P<sub>13</sub>(1720): 4±1
- D<sub>15</sub>(1675) has stronger electromagnetic coupling to the neutron than to the proton but parameters quite uncertain:

 $A_{1/2}^{p}$ =6 - 34, $A_{3/2}^{p}$ =3-30,  $A_{1/2}^{n}$ =-(21-57), $A_{3/2}^{n}$ =-(30-77)  $b_{\eta}$ =0 - 1% (PDG),  $b_{\eta}$ =17% (ETA-MAID, Chiang et al.)

interference structure in S<sub>11</sub>-sector?



#### Data:

- TAPS: B. Krusche et al., PRL74 (1995) 3736
  - GRAAL: F. Renard et al., PLB528 (2002) 215
  - CLAS: M. Dugger et al., PRL89 (2002) 222002
- Crystal Barrel: V. Crede et al., PRL94 (2005) 012004



## what is expected for $n(\gamma, \eta)n$ - why is it interesting?

previous data from MAMI only at lower

incident photon energies

- total cross sections for proton and neutron from MAID model with and without  $D_{15}(1675)$ (Eta-MAID, W.T. Chiang et al., NPA 700 (2002) 429)
  - full model MAID, proton  $d(\gamma,\eta)X, \sigma_n/\sigma_n(E_{\gamma})$ no D<sub>15</sub>(1675), proton  $d(\gamma,\eta)X, \sigma_n/\sigma_n(E_{\gamma})$ و[hub] 1.5 <sup>4</sup>He( $\gamma$ , $\eta$ )X,  $\sigma_n/\sigma_n(E_{\gamma})$ <sup>4</sup>He( $\gamma$ , $\eta$ )X,  $\sigma_{n}/\sigma_{n}(E_{\lambda})$ MAID full model σ<sub>n</sub>/σ<sub>p</sub> 10 MAID only S<sub>11</sub>(1535) full model MAID, neutron no D<sub>15</sub>(1675), neutron 0.5 800 900 0 700 1000 1500 1600 1700 1800 E<sub>v</sub>[MeV] W[MeV]
- predictions from chiral soliton models:  $P_{11}$ -like state of the anti-decuplet has strong photon-coupling to the neutron and large  $\eta N$  decay branching ratio

#### experimental setups - Ball, Barrel and TAPS and ...







#### **TAPS Crystal Ball - at MAMI**









## Identification of $\eta$ -meson production (exclusive)

- decay channel:  $\eta \rightarrow 3\pi^o \rightarrow 6\gamma$
- select events with 7 hits
- invariant mass off all photon pairs
- cut on  $\pi^o$  invariant mass
- select best combination of
   $6\gamma$  to  $3\pi^o$  by  $\chi^2$ -test
- use  $\pi^o$  mass as constraint, construct  $3\pi^o$  invariant mass
- cut on  $3\pi^o$  invariant mass
- missing mass analysis to remove  $\eta\pi$  final states etc. treat recoil nucleon as missing particle:  $m^2 = (\mathbf{P}_{\gamma} + \mathbf{P}_N - \mathbf{P}_{\eta})^2$ ,





# TAPS

# Nucleon Identification CB

#### inner detector:

- 3 layers of scintillating fibers
- cylindrical shape
- proton:
- 2 or 3 layers match a hit in the CB
- -neutron:
- no layer has fired



B. Krusche, Narrow Nucleon Resonances, Edinburgh, June 2009



## **Nucleon Identification TAPS**

taps veto detector:

- 5 mm plastic scintillator
- individual for each BaF<sub>2</sub> crystal

#### proton:

veto hit in front of BaF<sub>2</sub> crystal + E vs TOF

#### neutron:

no veto hit in front of BaF<sub>2</sub> crystal + E vs TOF



B. Krusche, Narrow Nucleon Resonances, Edinburgh, June 2009



#### quasifree $\eta$ -photoproduction off the deuteron (PhD thesis I.Jaegle)

• cross section for  $\gamma n \rightarrow \eta n$  from two analyses with very different systematics: (1)  $\eta$  in coincidence with recoil neutrons

(2) difference of inclusive cross section and  $\eta$  in coincidence with recoil protons



### comparison of free and quasi-free cross sections

quasi-free total cross sections corrected for Fermi smearing with correction factors calculated by folding known free proton cross section, respectively ETA-MAID prediction with momentum distribution of bound nucleons.

#### result:

in S<sub>11</sub>(1535) peak below 0.9 GeV perfect agreement between free and quasi-free proton data and quasi-free neutron data scaled by 2/3.

Fit parameters for  $S_{11}$  Breit-Wigner: proton:

W=1538 MeV,  $\Gamma$ =157 MeV,  $A_{1/2}^{p}$ =103 neutron:

W=1538 MeV,  $\Gamma$ =148 MeV,  $A_{1/2}^{n}$ =85

narrow structure around 1 GeV in neutron/proton ratio, width is only upper bound



#### angular distributions



## fit of angular distributions



#### result:

- all coeffi cients similar for proton and neutron above 1.25 GeV
- A<sub>o</sub> coeffi cient: dominance of S<sub>11</sub> resonances, for neutron small shoulder around 1 GeV
- A<sub>1</sub> coeffi cient: interference S<sub>11</sub>, P<sub>11</sub>?
- A<sub>2</sub> coeffi cient: interference S<sub>11</sub> - D<sub>13</sub> resonance



## Bonn-Gatchina model analysis

basis: coupled channel isobar analysis with background terms



- different scenarios to reproduce 'bump' structure:
  - left: interference in  $S_{11}$ -sector: adjusting phases etc.
  - middle: introduction of conventional (broad) P<sub>11</sub> resonance
  - right: introduction of very narrow P<sub>11</sub> resonance



## de-folding of Fermi smearing

- for events with neutron in TAPS ( $cos(\Theta_{\eta}^{\star}) < -0.1$ ) neutron energy from time-of-flight
- comparsion: W from photon energy (Fermi smeared) -W from nucleon - meson 4-vectors (resolution smeared)
- de-folded proton cross section similar to free proton, de-folded neutron cross section shows structure around 1.7 GeV: position: W=1683 MeV width: Γ=60±10 MeV (resolution dominated)





### new preliminary results from MAMI C: reaction identification



cut on co-planarity



#### preliminary excitation functions (PhD thesis D. Werthmüller)

•  $W = f(E_{\gamma}), 130 < \Delta \Phi < 220$ 



•  $W = f(E_{\gamma}), 170 < \Delta \Phi < 190$ 



0.9 = 0.8 = 0.9



•  $W = f(n, \eta), 130 < \Delta \Phi < 220$ 

•  $W = f(n, \eta), 170 < \Delta \Phi < 190$ 



#### other channels: photoproduction of $\pi^o$ mesons (MAMI-C)

(master thesis M. Dieterle)

- very preliminary (no normalization, no efficiency corrections)
- no structure in neutron excitation function around 1 GeV ?



#### other channels: photoproduction of $\pi^o$ mesons (MAMI-C)

- very preliminary (no normalization, no efficiency corrections)
- no structure in neutron excitation function around 1 GeV ?



#### other channels: photoproduction of $\pi^{o}$ -pairs (MAMI-C)

(master thesis M. Oberle)

- very preliminary (no normalization, no efficiency corrections)
- more statistics needed (already measured but not yet analyzed)



## other channels: photoproduction of $\pi^o \pi^{\pm}$ -pairs (MAMI-C)

(master thesis M. Oberle)

- very preliminary (no normalization, no efficiency corrections)
- more statistics needed (already measured but not yet analyzed)



#### future: polarization observables

#### • MAID predictions for $E_{\gamma}=1$ GeV with and w/o $D_{15}$ (data: xs: ELSA, $\Sigma$ : GRAAL)



#### expected sensitivity (MAMI: E, T, F; ELSA: ∑, G, H, P)



## Summary

#### systematic investigation of meson photoproduction off the deuteron:

- photoproduction of  $\eta$ -mesons:
  - narrow structure in excitation function off neutron (width pprox 30 MeV)
  - also seen at GRAAL/Grenoble and LNS/Tohoku
  - almost certainly not a nuclear effect
  - at MAMI-C also seen in photoproduction off <sup>3</sup>He
  - nature not yet determined
  - measuements of polarization observables upcoming
- other channels:
  - analysis off  $\gamma n \to n \eta'$  finished
  - analysis off

$$\gamma n \to n \pi^o, \to n \pi^o \pi^o, \to p \pi^o \pi^-, \to n \pi^o \eta$$
 under way

main contributions from:

I. Jaegle D. Werthmüller M. Oberle M. Dieterle

