Reaction dynamics in the effective Lagrangian method

Atsushi Hosaka RCNP, Osaka Univ.

June 10, 2009 Narrow Nucleon Resonance, Edinburg

Edingurg

Introduction

Exotic structure of baryon resonances qq and/or $q\overline{q}$ correlations

Production reactions

We define the standard mechanism
(1) *K*Λ(1520): Energy & Angular dependence Beam & Decay asymmetry
(2) *K*Λ_{gs}: Beam asymmetry, Meson cloud
(3) φ: Energy & Angular dependence
(4) *K*Λ(1405): Energy dependence

Introduction

Constituent quark model
 Successful for *ground states qq* and *qqq* of *independent particles*

Introduction

Constituent quark model
 Successful for *ground states qq̄* and *qqq* of *independent particles*

Observation of exotic hadron resonances

Θ⁺, N*(1670), **Λ**(1405), ..., X(3872), Z⁺(4430), etc *Pentaquarks Hadronic molecule Tetraquarks*

Key question: What multiquark configurations are possible? Observation of exotic hadron resonances

Θ⁺, N*(1670), **Λ**(1405), ..., X(3872), Z⁺(4430), etc *Pentaquarks Hadronic molecule Tetraquarks*

Key question: What multiquark configurations are possible?

Example in Nuclear Physics

How can we test/observe such configurations ?

Need more understanding of reaction dynamics

Production reactions

(1) *KA(1520*)

Energy dependence, Angular dependence Beam asymmetry, Decay asymmetry

(2) $K\Lambda_{gs}$

Beam asymmetry, Meson cloud

(3) *\phi*

Energy dependence, Angular dependence (4) $K\Lambda(1405)$

Energy dependence

Effective Lagrangian method - Photoproductions -

Nam, Hosaka, Kim, PRD71, 114012 (2005) e-Print: hep-ph/0503149

Also Karliner & Lipkin: e-Print: hep-ph/0506084

LEPS Data Muramatsu et al, 0904.2034[nucl-ex], to appear PRL

Lagirangians

$$\begin{split} \mathcal{L}_{\gamma NN} &= -e\bar{N} \bigg(\gamma_{\mu} + i \frac{\kappa_{N}}{2M_{N}} \sigma_{\mu\nu} k_{1}^{\nu} \bigg) A^{\mu}N + \text{h.c.}, \qquad \mathcal{L}_{\gamma KK} = ie\{(\partial^{\mu}K^{\dagger})K - (\partial^{\mu}K)K^{\dagger}\}A_{\mu}, \\ \mathcal{L}_{\gamma\Lambda^{*}\Lambda^{*}} &= -\bar{\Lambda}^{*\mu} \bigg\{ \bigg(-F_{1}\mathcal{A}g_{\mu\nu} + F_{3}\mathcal{A}\frac{k_{1\mu}k_{1\nu}}{2M_{\Lambda^{*}}^{2}} \bigg) - \frac{k_{1}\mathcal{A}}{2M_{\Lambda^{*}}} \bigg(-F_{2}g_{\mu\nu} + F_{4}\frac{k_{1\mu}k_{1\nu}}{2M_{\Lambda^{*}}^{2}} \bigg) \bigg\} \Lambda^{*\nu} + \text{h.c.}, \\ \mathcal{L}_{\gamma KK^{*}} &= g_{\gamma KK^{*}} \epsilon_{\mu\nu\sigma\rho} (\partial^{\mu}A^{\nu}) (\partial^{\sigma}K)K^{*\rho} + \text{h.c.}, \qquad \mathcal{L}_{KN\Lambda^{*}} = \frac{g_{KN\Lambda^{*}}}{M_{K}} \bar{\Lambda}^{*\mu} \Theta_{\mu\nu}(A, Z) (\partial^{\nu}K)\gamma_{5}N + \text{h.c.}, \\ \mathcal{L}_{K^{*}N\Lambda^{*}} &= -\frac{ig_{K^{*}N\Lambda^{*}}}{M_{K^{*}}} \bar{\Lambda}^{*\mu} \gamma^{\nu} (\partial_{\mu}K_{\nu}^{*} - \partial_{\nu}K_{\mu}^{*})N + \text{h.c.}, \qquad \mathcal{L}_{\gamma KN\Lambda^{*}} = -i\frac{eg_{KN\Lambda^{*}}}{M_{K}} \bar{\Lambda}^{*\mu}A_{\mu}K\gamma_{5}N + \text{h.c.}, \end{split}$$

Lagirangians

$$\begin{split} \mathcal{L}_{\gamma NN} &= -e\bar{N} \bigg(\gamma_{\mu} + i \frac{\kappa_{N}}{2M_{N}} \sigma_{\mu\nu} k_{1}^{\nu} \bigg) A^{\mu}N + \text{h.c.}, \qquad \mathcal{L}_{\gamma KK} = ie\{(\partial^{\mu}K^{\dagger})K - (\partial^{\mu}K)K^{\dagger}\}A_{\mu}, \\ \mathcal{L}_{\gamma \Lambda^{*}\Lambda^{*}} &= -\bar{\Lambda}^{*\mu} \bigg\{ \bigg(-F_{1}\mathcal{A}g_{\mu\nu} + F_{3}\mathcal{A}\frac{k_{1\mu}k_{1\nu}}{2M_{\Lambda^{*}}^{2}} \bigg) = \frac{k_{1}\mathcal{A}}{2M_{\Lambda^{*}}} \bigg(-F_{2}g_{\mu\nu} + F_{4}\frac{k_{1\mu}k_{1\nu}}{2M_{\Lambda^{*}}^{2}} \bigg) \bigg\} \Lambda^{*\nu} + \text{h.c.}, \\ \mathcal{L}_{\gamma KK^{*}} &= \bigg(g_{\gamma KK} \varepsilon_{\mu\nu\sigma\rho} (\partial^{\mu}A^{\nu}) (\partial^{\sigma}K)K^{*\rho} + \text{h.c.}, \qquad \mathcal{L}_{KN\Lambda^{*}} = \bigg(g_{KN\Lambda} - g_{\mu\nu} (A, Z) (\partial^{\nu}K)\gamma_{5}N + \text{h.c.}, \\ \mathcal{L}_{K^{*}N\Lambda^{*}} &= -\bigg(g_{K^{*}N\Lambda} - g_{\mu}K^{*} - \partial_{\nu}K^{*})N + \text{h.c.}, \qquad \mathcal{L}_{\gamma KN\Lambda^{*}} = -i \frac{eg_{KN\Lambda^{*}}}{M_{K}} \bar{\Lambda}^{*\mu}A_{\mu}K\gamma_{5}N + \text{h.c.}, \end{split}$$

- Known couplings
- $K*N\Lambda$ coupling is not known but not very important
- Ignore $\gamma \Lambda^* \Lambda^*$ couplings, $F_{1\sim 4}$

Total σ

Consistent with the new data by Muramatsu et al 0904.2034[nucl-ex]

t/θ dependence

Forward peak

Data: D.P. Baber et al, Z. Phys. C7, 17 (1980) Muramatsu et al 0904.2034[nucl-ex]

June 8-10, 2009

Beam asymmetry $\vec{\mathcal{E}}$ Magnetic Electric **K*** K K \mathbf{N} $\Lambda *$ Reaction plane KElectric $P = (-1)^J$ K-exch Magnetic $P = (-1)^{J+1}$ K*-exch $\bar{K}(q_t)$ or $\bar{K}^*(q_t)$ Λ^* N

$$\sigma(\phi) \Longrightarrow \Sigma = \frac{\sigma(90^\circ) - \sigma(0^\circ)}{\sigma(90^\circ) + \sigma(0^\circ)}$$

18

June 8-10, 2009

Beam asymmetry

Quark model $g_{K^*N\Lambda^*} \sim 10$

Chiral unitary $g_{K^*N\Lambda^*} \sim 1.5$

-0.01±0.07 Muramatsu et al

Decay asymmetry

$$\gamma$$
 K^+
 K^* at rest
 f
 K or K^* ,
 p
 f
 K or K^* ,
 r
 f
 K or K^* ,
 r
 f
 f
 $h(\Lambda^*) = 1/2$: $\cos^2 \theta + \frac{1}{3}$
If $h(\Lambda^*) = 3/2$: $\sin^2 \theta$
 K -exch: $\cos^2 \theta + \frac{1}{3}$
 K^* -exch: $\frac{2}{3}\sin^2 \theta + \frac{4}{9}$
Contact: const

S. P. Barrow et al@JLab PRC64, 044601 (2001)

June 8-10, 20The contact term

D. Barber et al., Z. Phys. C7, 17 (1980)

Λ(1520) photoproduction

- A simple Lagrangian method implies the contact term dominance
- Proton σ is larger than neutron σ
- Angular dependence, beam asymmetry, decay asymmetry seems consistent with the contact term dominance

(2) KΛ-production for meson cloud virtual qq

Ozaki-Nagahiro-Hosaka Phys.Lett.B665:178-181,2008.

Standard processes

(2) KΛ-production for meson cloud virtual qq̄

Ozaki-Nagahiro-Hosaka Phys.Lett.B665:178-181,2008.

Standard processes

Too large K* coupling?

	Phenomenological [*]
$g_{KN\Lambda}$	-13.46
$g_{KN\Sigma}$	4.25
$g^V_{K^*N\Lambda}$	-25.21
$g^T_{K^*N\Lambda}$	33.13
$g^V_{K^*N\Sigma}$	-15.33
$g_{K^*N\Sigma}^T$	-29.67

* Bennhold et al., NPA695 (2001) 237 Also discussed by Guidal et al. NPA627 (1997) 645

Too large K* coupling?

	${\rm Phenomenological}^{\boldsymbol{*}}$	Microscopi	c**
$g_{KN\Lambda}$	-13.46	-12.65	
$g_{KN\Sigma}$	4.25	5.92	
$g^V_{K^*N\Lambda}$	-25.21	-5.63	
$g_{K^*N\Lambda}^T$	33.13	-18.34	
$g^V_{K^*N\Sigma}$	-15.33	-3.25	
$g_{K^*N\Sigma}^T$	-29.67	7.86	

* Bennhold et al., NPA695 (2001) 237
Also discussed by Guidal et al. NPA627 (1997) 645
** Reuber et al (Bonn), NPA 570 (1994) 543

Where to study

June 8-10, 2009

Edingurg

By adding

The puzzle of the large K* coupling has been solved

Magnetic strength is provided by the QCD anomaly

Meson cloud is important

(3) ϕ production

γ N -> φ N

Increase as *E* Bump at 2 GeV or Dip at 2.2 GeV

Mibe et al PRL95,182001 (2005)

Pomeron and Meson exchanges

Coupled channels for the bump?

The importance was also emphasized by Shklyar for N*(1670)

 $\gamma N \rightarrow \phi N, K\Lambda(1520), (K\Lambda, K\Sigma) \rightarrow \phi N$

Resonance? Titov, Lee, PRC, 065205 (2003)

Resonance? Titov, Lee, PRC, 065205 (2003)

June 8-10, 2009

 Φ production seems dominated by Pomeron

Coupled channel effects are not important

N* is a possible candidate to explain the bump/dip near the threshold,

(4) \(1405)

Niiyama et al, Phys.Rev.C78:035202,2008

Unexpected energy dependence

June

Summary

• Exotics may have *correlations*

 $q\bar{q}, q\bar{q}, q\bar{q}q$ Question; how are they realized and observed We are still on the way to the answer

- Λ(1520) can be explained by standard react. mechanism Structure information is in various coupling constants
- Role of QCD anomaly through meson cloud in KA prod.
- Coupled channels are not important for ϕ prod. Possible explanation by $N^* \sim 2200$ MeV
- $\Lambda(1405)$ seems very unusual