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Outline� Resonane Basis� Sattering-Theory Basis for Narrow Strutures� Approximations� Elementary vs. Dynamial Resonanes� Can one de�ne an interfae between quark and hadroni models at the level of bare masses and bareverties? [A: Not without a lot of work.℄� Summary

H. Haberzettl Edinburgh, 8{10 June, 2009



Resonane BasisExperiment� `Bump' in the ross setion� Phase shifts show rapid hange through �=2� Time delay� Exponential deay lawTheoryResonant strutures arise from three types of mehanisms:Poles of the S-matrix orresponding to elementary resonanesPoles of the S-matrix orresponding to dynami resonanesStrutures that produe the usual signals of resonanes (see above) without aompanying poles ofthe S-matrix [Calui/Ghirardi, Phys. Rev. 169, 1339 (1968)℄Will ignore last item beause it annot be treated generially. However, its experimentalmanifestation may lead to erroneous phenomenologial pole-type desription.H. Haberzettl Edinburgh, 8{10 June, 2009
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Usually, we think of a resonane as abound state that didn't quite `make' it:=) Pole in the omplex plane
Sattering phase shifts:Æ(E) = Æres(E) + Æbg(E)Resonane phase shift:tan Æres = � �2(E � ER)Breit{Wigner peak:sin2 Æres = �24(E � ER)2 + �2H. Haberzettl Edinburgh, 8{10 June, 2009



Resonane Basis | Wide ResonaneResonant phase shifts with various onstant bakground ontributions
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Resonane Basis | Narrow ResonaneResonant phase shifts with various onstant bakground ontributions
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Resonane Basis | Narrow ResonaneResonant phase shifts with various onstant bakground ontributions
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Some Basis of Sattering TheoryTime-independent sattering: (+)(r) r!1�����! eip�r + T eiprr
Time-dependent sattering:	(+)(r; t) r!1�����! Z d3p �(p) e�iEpt �eip�r + T eiprr � = 	in(r; t) + 	s(r; t)�(p): experimental momentum distribution peaked at p0IF strutures in T smooth ompared to width of �(p), then	s(r; t) = Tr Z d3p �(p) ei(pr�Ept) ) d�d
 = jT j2Needed: Corret theoretial desription of narrow strutures.H. Haberzettl Edinburgh, 8{10 June, 2009
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Some Basis of Sattering Theory
However:IF T varies rapidly aross the width of �(p), then	s(r; t) 6= Tr Z d3p �(p) ei(pr�Ept) and d�d
 6= jT j2

Usual sattering-theoretial relations do not apply.Needed: Corret theoretial desription of narrow strutures.
H. Haberzettl Edinburgh, 8{10 June, 2009
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Elementary vs. Dynami Resonanes PRC56,2041(1997)�N ! �N
= + X

T X= +

X X= +U U

= +

dressed vertexdressed propagatornonpolar T matrixfull T matrix dynami pole
 8 �

�����

Y

;

Y

∆∆
�

Y

ππ
�

dynami pole arises fromtwo-partile irreduible kernel
H. Haberzettl Edinburgh, 8{10 June, 2009



Elementary vs. Dynami Resonanes PRC56,2041(1997)�N ! �N
= + X

T X= +

X X= +U U

= +

dressed vertexdressed propagatornonpolar T matrixfull T matrix elementary pole dynami pole
 8 �

�����

Y

;

Y

∆∆
�

Y

ππ
�

two-partile irreduible kernel
H. Haberzettl Edinburgh, 8{10 June, 2009



Elementary vs. Dynami Resonanes PRC56,2041(1997)N ! �N
= + ++ + U
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Elementary vs. Dynami Resonanes PRC56,2041(1997)N ! �N
= + ++ + U

++ + UX+

M = ++ +elementary pole
dynami poleSame mehanisms as in hadroni reation.H. Haberzettl Edinburgh, 8{10 June, 2009



Approximations
= + X

T X= +

X X= +U U

= + = + ++ + U

++ + UX+

M = ++ +

Approximations neessary to make equations manageable.However: Approximations often violate basi theoretial onstraints. (But the parents of theorresponding models love their hildren anyway...)Case in point: K-matrix Born approximation destroys gauge invariane. (Construting a onservedurrent is not enough for a mirosopi model!)If things go wrong, oftentimes model builders are too quik to look for alternative physial mehanismsinstead of blaming the de�ienies of their models.H. Haberzettl Edinburgh, 8{10 June, 2009
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Basi Two-pion Prodution Mehanisms
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Approximations
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Approximations neessary to make equations manageable.However: Approximations often violate basi theoretial onstraints. (But the parents of theorresponding models love their hildren anyway...)Case in point: K-matrix Born approximation destroys gauge invariane. (Construting a onservedurrent is not enough for a mirosopi model!)It is relatively easy and straightforward to �x the gauge-invariane problem in any approximation.HH, Nakayama, Krewald, PRC 74, 045202 (2006)H. Haberzettl Edinburgh, 8{10 June, 2009
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Elementary Resonanes and Hadron-Dynamial Models
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Elementary Resonanes and Constituent Quark Models
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Elementary Resonanes | Self-Consisteny
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Elementary Resonanes | Self-Consisteny
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Self-onsisteny sheme very elaboratePresumably not very pratialServes only to show that idea of de�ningan interfae between CQM and hadronimodels without any orretion mehanismis ill-advised
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SummaryThere are many strutures | dynamial or otherwise | that produe signatures usually attributedto resonant behavior.For a truly resonant state one should establish that there is a (positive) time delay, i.e., that thereating partiles spend an enhaned period of time in the interation region.For narrow strutures with �E & �, the basis of sattering theory need to be revisited.Model builders need to be more ritial of their own models when assessing the physial onsequenesof their �ndings.Whether poles of T - or S-matries are elementary or dynami in origin annot be unambiguouslydeided at the phenomenologial level.Bare input for hadron-dynamial models annot be diretly related to quark onstituent models. (Atleast not without a lot of work.)
Thank You!H. Haberzettl Edinburgh, 8{10 June, 2009


