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Resonan
e Basi
sExperiment� `Bump' in the 
ross se
tion� Phase shifts show rapid 
hange through �=2� Time delay� Exponential de
ay lawTheoryResonant stru
tures arise from three types of me
hanisms:Poles of the S-matrix 
orresponding to elementary resonan
esPoles of the S-matrix 
orresponding to dynami
 resonan
esStru
tures that produ
e the usual signals of resonan
es (see above) without a

ompanying poles ofthe S-matrix [Calu

i/Ghirardi, Phys. Rev. 169, 1339 (1968)℄Will ignore last item be
ause it 
annot be treated generi
ally. However, its experimentalmanifestation may lead to erroneous phenomenologi
al pole-type des
ription.H. Haberzettl Edinburgh, 8{10 June, 2009
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Some Basi
s of S
attering TheoryTime-independent s
attering: (+)(r) r!1�����! eip�r + T eiprr
Time-dependent s
attering:	(+)(r; t) r!1�����! Z d3p �(p) e�iEpt �eip�r + T eiprr � = 	in(r; t) + 	s
(r; t)�(p): experimental momentum distribution peaked at p0IF stru
tures in T smooth 
ompared to width of �(p), then	s
(r; t) = Tr Z d3p �(p) ei(pr�Ept) ) d�d
 = jT j2Needed: Corre
t theoreti
al des
ription of narrow stru
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Some Basi
s of S
attering Theory
However:IF T varies rapidly a
ross the width of �(p), then	s
(r; t) 6= Tr Z d3p �(p) ei(pr�Ept) and d�d
 6= jT j2

Usual s
attering-theoreti
al relations do not apply.Needed: Corre
t theoreti
al des
ription of narrow stru
tures.
H. Haberzettl Edinburgh, 8{10 June, 2009
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Elementary vs. Dynami
 Resonan
es PRC56,2041(1997)
N ! �N
= + ++ + U

++ + UX+

M = ++ +elementary pole
dynami
 poleSame me
hanisms as in hadroni
 rea
tion.H. Haberzettl Edinburgh, 8{10 June, 2009
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Approximations ne
essary to make equations manageable.However: Approximations often violate basi
 theoreti
al 
onstraints. (But the parents of the
orresponding models love their 
hildren anyway...)Case in point: K-matrix Born approximation destroys gauge invarian
e. (Constru
ting a 
onserved
urrent is not enough for a mi
ros
opi
 model!)If things go wrong, oftentimes model builders are too qui
k to look for alternative physi
al me
hanismsinstead of blaming the de�
ien
ies of their models.H. Haberzettl Edinburgh, 8{10 June, 2009
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Elementary Resonan
es | Self-Consisten
y
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onne
tion between quark-model 
al
ulations (toptwo boxes on the left) and �eld-theory-inspired hadron-dynami
al models (top two boxes on the right). Both quark-models with expli
it hadron degrees of freedom and hadron-dynami
al models 
an be used to dire
tly extra
t resonan
e-pole parameters (masses and widths). The experimental dataare linked to these parameters via partial-wave analyses. Thelines labeled 1{4, taken by themselves, des
ribe an approa
hwhere there is no feedba
k between the hadroni
 dynami
sthat link to the data and the quark model. The feedba
kme
hanism enters via lines 6 and 8: Line 6 supplies theopti
al potential into the quark model whi
h may then beused to 
al
ulate the physi
al resonan
e-pole parameters di-re
tly. Comparison of the 
orresponding values obtained viathe hadroni
 or quark routes 3 or 7, respe
tively, provide afeedba
k that, via line 8, 
an be used to improve, along line1, the bare input for the hadroni
 approa
h.H. Haberzettl Edinburgh, 8{10 June, 2009
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Self-
onsisten
y s
heme very elaboratePresumably not very pra
ti
alServes only to show that idea of de�ningan interfa
e between CQM and hadroni
models without any 
orre
tion me
hanismis ill-advised
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SummaryThere are many stru
tures | dynami
al or otherwise | that produ
e signatures usually attributedto resonant behavior.For a truly resonant state one should establish that there is a (positive) time delay, i.e., that therea
ting parti
les spend an enhan
ed period of time in the intera
tion region.For narrow stru
tures with �E & �, the basi
s of s
attering theory need to be revisited.Model builders need to be more 
riti
al of their own models when assessing the physi
al 
onsequen
esof their �ndings.Whether poles of T - or S-matri
es are elementary or dynami
 in origin 
annot be unambiguouslyde
ided at the phenomenologi
al level.Bare input for hadron-dynami
al models 
annot be dire
tly related to quark 
onstituent models. (Atleast not without a lot of work.)
Thank You!H. Haberzettl Edinburgh, 8{10 June, 2009


