Recoil Polarisation Measurements in Meson Photoproduction

Narrow Nucleon Resonance Workshop Edinburgh, 8-10th June, 2006

> Derek I. Glazier University of Edinburgh

Recoil Polarisation Measurements

- 16 photoproduction observables providing different sensitivities to the reaction amplitudes
- Highly desirable to have recoil observables in addition to beam and target
- Partial Wave Analysis then allows extraction of nucleon resonance characteristics
- Proton and Neutron targets to separate isospin amplitudes
- Small enough E and θ bins to resolve resonance structure

Beam-Recoil Observables

$$\rho_f \frac{d\sigma}{d\Omega} = \frac{1}{2} \frac{d\sigma}{d\Omega_{un}} \left\{ 1 - P_{\gamma}^T \Sigma \cos 2\phi - \sigma_{x'} \left(P_{\gamma}^T O_x \sin 2\phi + P_{\gamma}^C C_x \right) + \sigma_{y'} \left(P - P_{\gamma}^T T \cos 2\phi \right) - \sigma_{z'} \left(P_{\gamma}^T O_z \sin 2\phi + P_{\gamma}^C C_z \right) \right\}$$

Linear P_{γ}^{T} and Circular P_{γ}^{C} beam polarisation + Recoil Polarisation Measurement

 \Rightarrow access to 6 photoproduction observables

No Magnetic Field \Rightarrow Only measure tranverse polarisation

 \therefore We can measure P, T, O_x, C_x

Measuring Nucleon Polarisation

$$n(\phi_{sc}) = n_o \{1 + A_{eff} [P_y \cos \phi_{sc} - P_x \sin \phi_{sc}]\}$$

= $n_o \{1 + A_{eff} P_T \sin (\phi_{sc} + \phi_0)\}$
with $P_T = \sqrt{P_x^2 + P_y^2}$ and $\phi_0 = \arctan \left(-\frac{P_y}{P_x}\right)$

- Use Spin Orbit Interaction
- Azimuthal distribution related to transverse polarisation

Polarimeter Reference Frame

Polarisation $P = (P_x, P_y, P_z)$

defined in Lab. frame :

$$\underline{z}'' = \underline{\underline{p}}_{|\underline{p}|} \quad \underline{y}'' = \underline{\underline{z \times \underline{p}}}_{|\underline{z \times \underline{p}}|} \quad \underline{x}'' = \underline{y}'' \times \underline{z}''$$

The polarisation is Lorentz Rotated from primed CM frame

Effectively rotated around Y-axis e.g. $C_x \to C''_x(C_x, C_z)$

• Unpolarised Beam $P_x = P_z = 0$ and $P_y = -P$

• Circularly Polarised Beam

 $P_x = -\frac{P_{\gamma}^C C''_x}{\gamma}, P_y = -P$ and $P_z = \frac{P_{\gamma}^C C''_z}{\gamma}$

• Linearly Polarised Beam

$$P_x = \frac{-P_{\gamma}^T O_x'' \sin 2\phi}{\left(1 - P_{\gamma}^T \sum \cos 2\phi\right)}, \ P_y = \frac{-P + P_{\gamma}^T T \cos 2\phi}{\left(1 - P_{\gamma}^T \sum \cos 2\phi\right)} \text{ and } P_z = \frac{P_{\gamma}^T O_z'' \sin 2\phi}{\left(1 - P_{\gamma}^T \sum \cos 2\phi\right)}$$

JLab Hall A Results for π° photoproduction

Phys.Rev. C, 66 034614 (2002)

•Used Focal Plane Polarimeter on magnetic spectrometer ~30 Data points for P, C_x and C_z $0.8 < E_y < 4.1 GeV$, $60 < \theta < 135$

•Also a reasonable number of previous P measurements below 1.5 GeV

X

 $\sigma_{\rm E}$ ~2 MeV I~10⁸ γ /s

TAPS 384 BaF2 Crystals Forward 21⁰ 1.5m upstream CB 672 Nal(Ti) Crystals Spherically arranged around target 93% phase space

MAMI-C provides 1.5GeV e-Tag Brem. Photons to 1.4GeV-

Linear or circular pol.

Proton Polarimeter

Polarimeter Data Analysis

3500 3500 3000 Algorithm 3000 2500 2500 • Look for 3 clusters in ball 2000 2000 1500 1500 • Loop over and find π^0 by invariant mass of 1000 1000 500 $2\gamma, M_{\gamma\gamma}$ 500 -80-60-40-20 0 20 40 60 80 150-100 -50 0 50 100 150 • Select π^0 events with $M_{\pi^0}^{miss} \simeq M_p$ $M_{-0}^{miss} - M_n$ $M_{\gamma\gamma} - M_{\pi^0}$ • Check π^0 in plane with PID scint. hit 2000 $\theta_{sc} < 12^{\circ}$ $\theta_{sc} > 12^{\circ}$ • Reconstruct scattering angles 1500 • Select events with large θ_{sc} 1000 500 400 600 800 1000 1200 1400 E_{γ}

Beam Helicity Asymmetries

$$A(\phi_{sc}) = \frac{N^{+}(\phi_{sc}) - N^{-}(\phi_{sc})}{N^{+}(\phi_{sc}) + N^{-}(\phi_{sc})}$$

Analysing Power

•Polarised scattering model •Parameterisation based on world pC scattering data set •Function of T_p and θ_{sc}

- •GEANT4 tracking model
- Include all polarimeter
 - •components
 - •Track polarisation=+1 and -1

Results of Analysing Power Integration

Perform full data analysis then,

Overall detection eff. ~2-3%, analysing power~0.2

<u>Preliminary</u> $\pi^{\circ} C_{x}$ Results

•Divide real data asymmetries by MC analysing pow.

Preliminary $\pi^{\circ} C_{\gamma}$ Results

Do we see any narrow structure around 1685 MeV ?

η photoproduction data analysis

800E

700

600

500

400

300

200

- Same algorithm as for π^{o} analysis Select on η mass
 - 100 100 50 100 150 -100 -50 -150-100 -50 0 0 50 100 M^{miss}–Mg (MeV) $M_{\gamma\gamma} - M_{\Lambda} (MeV)$ 0.15 χ^2 / ndf 12.09 / 9 0.04476 ± 0.01114 **p**0 0.1 0.05 0 -0.05 **-0.1** -0.15 -150 -100 -50 50 100 150 0

500

400

300

200

¢ scat

Reconstruct ϕ_{scat} helicity asymmetries Assume Analysing power =0.3

<u>Very Preliminary</u> ηC_x Results

Do we see any narrow structure around 1685 MeV ?

Current Status

- Preliminary analysis of C_x for π^0 and η photoproduction on the proton completed
- Finalising analysing power calibration
- Monte Carlo acceptance for P
- Linearly polarised photons for 450<E_{_{\!\gamma}}\!\!<\!\!650 MeV for O_ $_{_{\!X}}$ and T
- Also measure $2\pi^0$ channel

Future plans

Ultimately we would like recoil polarimetry for:

- •CHARGED and neutral meson photoproduction
- •Protons and NEUTRON targets
- •Large acceptance
- •New design for MAMI/ELSA PAC

New Central Nucleon Polarimeter Design

Example $\gamma p \rightarrow \pi^+ n$

- Implement new design into CrystalBall Monte Carlo model
- Track $\pi^{\scriptscriptstyle +} n$ events and analyse ouput
- π^+ ID from ΔE -E technique
- n/p charge exchange from wire chamber track with no scintillator hit
- Polarimetry information comes just from track

Simulation Spectra for π^+ n

Simulation Results for π^+ n

Detection Efficiency ~1% We can produce measurable asymmetries!

Comparison of old and new

Relative figure of merit for proton and neutron polarimeter,

$$\frac{F_n}{F_p} = \frac{A_{pow}^n \sqrt{\epsilon^n}}{A_{pow}^p \sqrt{\epsilon^p}} \sim \frac{0.1.\sqrt{1}}{0.2.\sqrt{2.5}} = 0.25$$

Proton beamtime=2.5 weeks,

Therefore 10 weeks required for similar results with neutrons i.e 6-8 θ bins, 50 MeV E₂ bins, (100 MeV above 1.3GeV) σ ~0.05–0.1

With Deuteron target would simultaneously measure π^0 , π^+ , π^- , η 4 times as many bins with proton in final state

Summary

- A novel large acceptance recoil polarimeter has been established with the CrystalBall@MAMI
- Recoil polarisation measurements give new sensitivity to reaction amplitudes and are important for nucleon resonance extraction
- Preliminary π^0 results have qualitative agreement with MAID and SAID predictions
- Hint of some structure at 1685 MeV in very preliminary $\eta,$ $C_{_x}$ analysis
- What do the models say about this?

Kinematics and Acceptance

Analysing Power for n/p charge exchange

D. Glazier, PhD Thesis, University of Glasgow, 2003 n/p Charge exchange on CH2 at 400 MeV well modelled by quaifree model

see also NPOL3, NIM A547, (2005) 569 +C(n,p) scattering papers Analysing Power 0.1-0.2 Tn>150 MeV

Analysing powers for ¹²C(n,p) scattering

- Previous polarimeters (e.g. Yerevan) use ${}^{1}H(n,p)$ analysing powers for ${}^{12}C(n,p)$.
- Supported by recent RCNP measurements, older Saclay data, A1 at MAMI

Wakasa et. al. NIM A547 (2005) 269 NPOL3 at RCNP Cyclotron

Saclay measurements

p(γ ,η)p C_{x'}

• First measurement of beam-recoil observable in η photoproduction

• Next steps O_x , P, T also p(γ , 2π) and p(γ , π η) channels

G4 – Stationary proton target: $p(\gamma, \pi^{0})p$

C_{x} - transferred poln. from circ. pol γ : $p(\gamma, \pi^{0})p$

