Preliminary Σ for $\gamma p \rightarrow p \pi^{0}, n \pi^{+}, \text{ and } p \eta$ from CLAS g8b run period with 0.95 GeV $\langle E_{\gamma} \langle 1.2 \text{ GeV} \rangle$ ASU Meson Physics Group* (and g8b friends)

THE GEORGE WASHINGTON UNIVERSITY

*Work at ASU is supported by the National Science Foundation

Patrick Collins Mike Dugger Brian Morrison Eugene Pasyuk Barry Ritchie

Experimental facility

The Thomas Jefferson National Accelerator Facility

• Continuous Electron Beam Accelerator Facility (CEBAF)

- Racetrack design
- Energies up to 6 GeV (for now)

CLAS

- Good for charged particles
- Large acceptance

CLAS

Charged particle identification

- The path length and curvature determined by tracking
- Time of travel determined by Time-of-flight and start counter
- ID determined by checking compatibility of measured velocity to known particles (given the measured momentum)

M. Dugger, NNR Workshop, June 2009

Experimental capabilities: Jefferson Lab Hall B

- Jefferson Lab Hall
 B bremsstrahlung
 photon tagger
 - $E_{\gamma} = 20-95\%$ of E_0
 - E_e up to ~5.5 GeV
 - Circular polarized photons with longitudinally polarized electrons
 - Oriented diamond crystal for linearly polarized photons

M. Dugger, NNR Workshop, June 2009

Photon beam polarization for g8b (June 20- Sept 1, 2005)

- Coherent bremsstrahlung in 50 μ diamond
- Analytical QED coherent bremsstrahlung calculation fit to actual spectrum (Livingston/Glasgow) ©
- Estimated systematic uncertainty in *P*: ~3%
- \perp 1.3 GeV edge shown

Statistics for g8b

Coherent Edge Non-polarized 	Billions of events 2.3
• 1.3 GeV	1.4
• 1.5 GeV	2.6
• 1.7 GeV	2.2
• 1.9 GeV	1.2
• 2.1 GeV	0.9

NOTE: Energy range from 0.95 to 1.2 GeV represents a small fraction of collected data and only from the 1.3 GeV data set

Fourier moment method (CLAS Note 2008-35:

http://www1.jlab.org/ul/Physics/Hall-B/clas/public/2008-035.pdf)

Simultaneously uses full azimuthal φ
 acceptance of data set. ^(C)

• Only 2 histograms per kinematic bin need to be fit. ③

Normalized yields

Normalized yield density f^{i,j} for each kinematic bin i,j

$$f^{i,j}(\varphi) \equiv \rho L \int_{E_{i-1}}^{E_i} \int_{\cos\theta_{j-1}}^{\cos\theta_j} \varepsilon(E,\theta,\varphi) \frac{d^3\sigma}{d(\cos\theta)dEd\varphi} d(\cos\theta)dE$$

Integrated normalized yield densities

Moments of normalized yields

- Expand the $f^{i,j}$ in Fourier series with coefficients Y_m and Z_m : $f_a^{i,j}(\varphi) = \frac{Y_0}{2\pi} + \frac{1}{\pi} \sum_{m=1}^{\infty} [Y_m \cos(m\varphi) + Z_m \sin(m\varphi)]$
- Find the coefficients Y_{an} , Y_{\perp_n} , $Y_{\mid\mid n}$ in terms of $f_a(\varphi)$:

$$Y_{an} = \int_{0}^{2\pi} f_{a}^{i,j}(\varphi) \cos(n\varphi) d\varphi$$
$$Y_{\perp n} = \int_{0}^{2\pi} f_{\perp}^{i,j}(\varphi) \cos(n\varphi) d\varphi = \int_{0}^{2\pi} f_{a}^{i,j}(\varphi) [1 + P_{\perp} \Sigma \cos(2\varphi)] \cos(n\varphi) d\varphi$$

$$Y_{\parallel n} = \int_{0}^{2\pi} f_{\parallel}^{i,j}(\varphi) \cos(n\varphi) d\varphi = \int_{0}^{2\pi} f_{a}^{i,j}(\varphi) \Big[1 - P_{\parallel} \Sigma \cos(2\varphi) \Big] \cos(n\varphi) d\varphi$$

Finding Σ from the moment histograms

By using the orthogonality, we find relations between Y_a , $Y_{||}$, and Y_{\perp} for m=0,2,4:

$$\begin{split} Y_{\perp 2} - Y_{\parallel 2} &= \left(P_{\perp} + P_{\parallel}\right) \Sigma \left(\frac{Y_{a0}}{2} + \frac{Y_{a4}}{2}\right) \\ P_{\parallel} Y_{\perp 0} + P_{\perp} Y_{\parallel 0} &= Y_{a0} \left(P_{\parallel} + P_{\perp}\right) \\ P_{\parallel} Y_{\perp 4} + P_{\perp} Y_{\parallel 4} &= Y_{a4} \left(P_{\parallel} + P_{\perp}\right) \end{split}$$

The Y_n histograms are created by weighting each event by $cos(n\varphi)$ in a given $cos(\theta), E_{\gamma}$ bin.

$$\Sigma = \frac{2(Y_{\perp 2} - Y_{\parallel 2})}{P_{\parallel}(Y_{\perp 0} + Y_{\perp 4}) + P_{\perp}(Y_{\parallel 0} + Y_{\parallel 4})}$$

M. Dugger, NNR Workshop, June 2009

M. Dugger, NNR Workshop, June 2009

Preliminary results for Σ from g8b

- Preliminary results: π^0 , π^+ , and η for 1.3 GeV coherent edge setting
 - Fourier moment method
 - Only showing results for $E_{\gamma} < 1.2 \text{ GeV}$
- Two ways to view preliminary results
 - Fixed energy
 - Fixed angle

Fixed energy – 2 slides Fixed angle – 2 slides

Preliminary Σ results for π^0

Fixed energy slide 1, lines are SAID

Preliminary Σ results for π^0

Fixed energy slide 2, lines are SAID

M. Dugger, NNR Workshop, June 2009

Fixed angle slide 1, lines are SAID

Fixed energy – 2 slides Fixed angle – 2 slides

Preliminary Σ results for π^+

M. Dugger, NNR Workshop, June 2009

Preliminary Σ results for π^+

Fixed energy slide 2, lines are SAID

Fixed angle slide 1, lines are SAID

Fixed angle slide 2, lines are SAID

Chose a branch: $\eta \rightarrow \pi^+ \pi^- \pi^0$ (Γ ~22.7%)

Define *X*: counts 40000 $\gamma p \rightarrow p X$ 20000 0 0.3 0.4 0.5 0.6 0.7 0.8 0,9 $MassX (GeV/c^2)$ **Define Y:** • 1000 MassY (GeV/c²) 0.2 800 $p X \rightarrow p \pi^+\pi^-Y$ 600 0.1 400 200 0 n 0.3 0.5 0.8 0.9 0.4 0.6 0.7 Cut on $M_V = M(\pi^0)$ MassX (GeV/c²)Counts ω 6000 4000 2000 0 0.5 0.7 0.8 0.3 0.4 0.6 0.9 $MassX (GeV/c^2)$

M. Dugger, NNR Workshop, June 2009

4 E-counters per bin

M. Dugger, NNR Workshop, June 2009

2 E-counters per bin

M. Dugger, NNR Workshop, June 2009

2 E-counters per bin

M. Dugger, NNR Workshop, June 2009

Helicity amplitudes and observables

M. Dugger, NNR Workshop, June 2009

FROzen Spin Target "FROST"

- Longitudinally polarized target
- Beam: Circular polarization; Linear polarization; Un-polarized
- Will measure σ , Σ , E, and G for η .

Beam	Target	Observable
0	Longitudinal	$\frac{d\sigma}{d\Omega} = \frac{d\sigma_0}{d\Omega}$
Circular	Longitudinal	$\frac{d\sigma}{d\Omega} = \frac{d\sigma_0}{d\Omega} \left[1 - P_z P_{\Box} E \right]$
Linear	Longitudinal	$\frac{d\sigma}{d\Omega} = \frac{d\sigma_0}{d\Omega} \left[1 - P_T \Sigma \cos 2\phi - P_T P_z G \sin 2\phi \right]$

 σ_{θ} = unpolarized cross section, P_T = transverse beam polarization P_{θ} = circular polarization, P_z = longitudinal target polarization

FROST statistics

Longitudinally polarized target

Circularly polarized beam E_0 =1.645 GeV1.1B events complete E_0 =2.478 GeV2.3B events

Grand Total: 10.1B events

Summary

- Good progress for g8b data with the *first/worst 200 MeV* of photon energy range
 - Finish line is in sight for \varSigma for π^+ , $\pi^{\,\theta}$, and η
- Goal: To have g8b analysis ready for collaboration review by end of year
- FROST data will give us access to the Σ, G, and E observables from threshold up to 2.3 GeV for

 $\gamma p \rightarrow p \eta$

