S_{11} resonances in meson baryon production

M. Döring, K. Nakayama

FZ Jülich, University of Georgia

Narrow Nucleon Resonances 2009: Predictions, Evidences, Perspectives

IntroductionDynamically generated resonancesCombined AnalysisThe $N^*(1535)$ as a dynamically generated resonance

Resonances in πN scattering [M.D., C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, 0903.4337 [nucl-th]]

The Jülich model of meson exchange.

						Re z ₀	-2 lm z ₀	R	θ [deg]
						[MeV]	[MeV]	[MeV]	[⁰]
	_	\sim			N^* (1535) S_{11}	1519	129	31	-3
					ARN	1502	95	16	-16
				_	HOE	1487			
					CUT	1510 ± 50	260 ± 80	120 ± 40	+15±45
					N^* (1650) S_{11}	1669	136	54	-44
					ARN	1648	80	14	-69
					HOE	1670	163	39	-37
S ₁₁ 😽	XXXIII	$1 \wedge 1 \wedge$	1 XX	1000	CUT	1640 ± 20	150 ± 30	60 ± 10	-75±25
X	\times	IN XX	XXX	1000	$N^{*}(1720) P_{13}$	1663	212	14	-82
			H-	1700	ARN	1666	355	25	-94
					HOE	1686	187	15	
					CUT	1680 ± 30	120 ± 40	8±12	-160 ± 30
					$\Delta(1232) P_{33}$	1218	90	47	-37
50 1500					ARN	1211	99	52	-47
					HOE	1209	100	50	-48
					CUT	1210 ± 1	100 ± 2	53 ± 2	-47±1
1400					$\Delta^{*}(1620) S_{31}$	1593	72	12	-108
					ARN	1595	135	15	-92
	Re z ₀	-2 lm z ₀	R	θ [deg]	HOE	1608	116	19	-95
	[MeV]	[MeV]	[MeV]	[⁰]	CUT	1600 ± 15	120 ± 20	15 ± 2	-110 ± 20
$N^{*}(1440) P_{11}$	1387	147	48	-64	$\Delta^{*}(1700) D_{33}$	1637	236	16	-38
ARN	1359	162	38	-98	ARN	1632	253	18	-40
HOE	1385	164	40		HOE	1651	159	10	
CUT	1375 ± 30	180 ± 40	52 ± 5	-100 ± 35	CUT	1675 ± 25	220 ± 40	13±3	-20 ± 25
$N^*(1520) D_{13}$	1505	95	32	-18	$\Delta^{*}(1910) P_{31}$	1840	221	12	-153
ARN	1515	113	38	-5	ARN	1771	479	45	+172
HOE	1510	120	32	-8	HOE	1874	283	38	-
CUT	1510 ± 5	114 ± 10	35 ± 2	-12±5	CUT	1880 ± 30	200 ± 40	20 ± 4	<mark>-90</mark> <u></u> ±30
[ARN]: Arndt et al., PRC 74 (2006), [HOE]: Höhler, πN News], 9 (1993), [CUT]: Cutkowski et al., PRD 20 (1979),									

No pole term in the potential for the Roper; still a pole in the complex practice state and the second state and t

The $N^*(1535)$ as a dynamically generated resonance

N. Kaiser et al., PLB **362** (1995) 23, NPA **612** (1997) 297, T. Inoue *et al.*, PRC **65** (2002) 035204 Nieves, Ruiz Arriola, PRD 64 (2001)

From the resonance picture to multiple rescattering:

- $(0^-)_M \otimes (1/2^+)_B$ in SU(3): Coupled channels in S = Q = 0 are πN , ηN , $K\Sigma$, $K\Lambda$.
- Interaction from the LO chiral Lagrangian: (Isovector) Weinberg-Tomozawa interaction.
- Unitarization through the Bethe-Salpeter equation

$$T = \left(1 - VG\right)^{-1} V.$$

• $N^*(1535)$: Quasi-bound $K\Lambda$, $K\Sigma$ state

Photon coupling to the $N^*(1535)$ [Talk K. Nakayama on the ECT* PWA meeting, Trento June 2009]

Electromagnetic properties provide independent tests, because the couplings of the photon to the constituents of the resonances are well known. Parameter-free predictions are possible.

Additional degrees of freedom

Phase problem as explained in K. Nakayamas talk on the ECT* PWA Workshop Trento 06/2009.

- ► The $N^*(1650)$: Closeby resonance with the $N^*(1535)$'s quantum numbers \rightarrow interfering resonances
- Could the $N^*(1535)$ be genuine? \rightarrow put it as a resonance!
- ▶ → Include two genuine pole terms $\delta V_{ij} \sim \frac{g_i g_j}{(\sqrt{s}-M)}$ in the potential.
- Consider all available data on pion- and photon-induced reactions.
- Adjust the parameters: subtraction constants, couplings of the genuine resonances.
- With the following results:

Introduction Results Combined Analysis Summary

Pole structure

Schematic picture; explained in greater detail in K. Nakayama's talk, ECT*/Trento/06/2009.

Implications for fits using subthreshold resonances: The $N^*(1535)$ may be gone! Forschungszentrum Jülich

 $\pi N \to \pi N$

Introduction Results **Combined Analysis**

$\pi N \rightarrow \pi N$ at low energies

Refit; no genuine resonance terms.

in der Helmholtz-Gemeinschaft

$\gamma p ightarrow \pi^0 p$ at threshold

 $\gamma N \to \pi N$

Introduction Results Combined Analysis Summary

η related quantities

Introduction Results Combined Analysis Summary

η related quantities

Results Summary

The ratio $rac{\sigma(\gamma n o \eta n)}{\sigma(\gamma p o \eta p)}$ Fermi motion not yet included.

Intermediate states in photon loops, Q = 0, 1:

$$\quad \pi^{-}p, \pi^{0}n, \eta n, K^{0}\Lambda, K^{+}\Sigma^{-}, K^{0}\Sigma^{0}$$

$$a_{-1}^{\gamma} = g_{\gamma} g_j, \quad g_{\gamma} = \sum_{i=1}^6 \tilde{\Gamma}^i g_i,$$

$$i\,\tilde{M}^{\mathrm{PA}}=\frac{a_{-1}^{\gamma}}{z-z_0}.$$

Results Summary

The ratio $rac{\sigma(\gamma n o \eta n)}{\sigma(\gamma p o \eta p)}$ Fermi motion not yet included.

Intermediate states in photon loops, Q = 0, 1:

$$\quad \pi^{-}p, \pi^{0}n, \eta n, K^{0}\Lambda, K^{+}\Sigma^{-}, K^{0}\Sigma^{0}$$

$$a_{-1}^{\gamma} = g_{\gamma} g_j, \quad g_{\gamma} = \sum_{i=1}^6 \tilde{\Gamma}^i g_i,$$

$$i\tilde{M}^{\mathrm{PA}} = \frac{a_{-1}^{\gamma}}{z - z_0}.$$

Results Summary

The ratio $rac{\sigma(\gamma n o \eta n)}{\sigma(\gamma p o \eta p)}$ Fermi motion not yet included.

Intermediate states in photon loops, Q = 0, 1:

•
$$\pi^- p, \pi^0 n, \eta n, K^0 \Lambda, K^+ \Sigma^-, K^0 \Sigma^0$$

$$a_{-1}^{\gamma} = g_{\gamma} g_j, \quad g_{\gamma} = \sum_{i=1}^6 \tilde{\Gamma}^i g_i,$$

$$i\tilde{M}^{\mathrm{PA}} = \frac{a_{-1}^{\gamma}}{z - z_0}.$$

Results Summary

The ratio $rac{\sigma(\gamma n o \eta n)}{\sigma(\gamma p o \eta p)}$ Fermi motion not yet included.

- Intermediate states in photon loops, Q = 0, 1:

•
$$\pi^0 p, \pi^+ n, \eta p, K^+ \Lambda, K^+ \Sigma^0, K^0 \Sigma^+$$

$$a_{-1}^{\gamma} = g_{\gamma} g_{j}, \quad g_{\gamma} = \sum_{i=1}^{6} \tilde{\Gamma}^{i} g_{i},$$
$$i \tilde{M}^{\text{PA}} = \frac{a_{-1}^{\gamma}}{z - z_{0}}.$$

 SU(3) loop structure explains naturally the excess in σ_n.

> Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Results Summary

The ratio $rac{\sigma(\gamma n o \eta n)}{\sigma(\gamma p o \eta p)}$ Fermi motion not yet included.

- Intermediate states in photon loops, Q = 0, 1:

•
$$\pi^0 p, \pi^+ n, \eta p, K^+ \Lambda, K^+ \Sigma^0, K^0 \Sigma^+$$

$$a_{-1}^{\gamma} = g_{\gamma} g_j, \quad g_{\gamma} = \sum_{i=1}^{6} \tilde{\Gamma}^i g_i,$$

 $i \tilde{M}^{\text{PA}} = \frac{a_{-1}^{\gamma}}{z - z_0}.$

 SU(3) loop structure explains naturally the excess in σ_n.

> Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Remarks on σ_n/σ_p

- Full SU(3) structure appears in intermediate photon loops of the $U\chi PT$ model (not considered in many phenomenological models).
- Structure in σ_n/σ_p appears from coupling of the γ to the $K\Lambda$ intermediate state (in interference with all other SU(3) allowed states).
- This is connected to:
 - Strong coupling of the S_{11} partial wave to $K\Lambda$, $K\Sigma$, $\eta N...$
 - One of the consequences being a dynamically generated $N^*(1535)$, but rather think of an energy dependent amplitude.
- ► The excess in $\sigma_n \equiv \sigma(\gamma n \to \eta n)$ appears as a pure interference effect in S_{11} , from 1535 and 1650, but more important intermediate photon loops with full SU(3) structure. Signs of this have always been there.
- ► The excess in σ_n appears qualitatively in different coupled channel models that comprise SU(3) structure plus unitarization. It appears in fits where σ_n/σ_p is not included (the rest is fine tuning) $\pi\pi N \ln \eta N$ production.
- Full rise and <u>fall</u> in σ_n/σ_p appears after including the $N^*(1650)$.
- ▶ Isospin limit, no genuine states, only πN photon loop: $\sigma_n/\sigma_p \equiv 1$

Properties of the present solution

- ▶ Combined analysis of reactions in *S*₁₁ and *S*₃₁, for
 - πN and γN initial state.
 - πN , ηN , $K\Lambda$, $K\Sigma$ final state.
- Features of the solution (decided by the fit):
 - Dynamically generated $N^*(1535)$.
 - Genuine pole term for the $N^*(1650)$ (resonance interferenc with $N^*(1535)$).
 - Second genuine pole far in complex plane produces small background instead of replacing the N*(1535). Mostly needed for missing t channel meson exchange with anomalous photon couplings.
 - Dynamical generation of virtual state close to threshold. May be genuine or "mock up" of subthreshold cuts.
 - Some need for higher chiral interactions at low energies is seen (too much strengths below the ηN threshold); $\pi \pi N$ channel could be included.
- ▶ Simultaneous description of different ηN cusps (forms, strengths) and $N^*(1535)$ phases in $S_{11}(\pi N \rightarrow \pi N)$, $E_{0+}(\gamma p)$, $E_{0+}(\gamma n)$.
- ▶ Photon coupling to intermediate πN , $K\Lambda$, $K\Sigma$ can explain σ_n/σ_p in $\gamma N \rightarrow \eta N$.

Previous results

The rise in σ_n/σ_p observed in different models.

The rise has been observed in previouse models that comprise the full space of SU(3) allowed channels. No Fermi motion included

$\pi\pi N$ in ηN production

Necessary inelasticity from $\pi\pi N$ to bring the cross section in $\pi N \rightarrow \eta N$ down from 3.5 μb ; consequence of unitarity and inelasticity [Argument by C. Hanhart].

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft $\pi N o KY$ back

Pole positions and coupling strengths

 $g_{K^0\Sigma^0}$

 $q_{K^0\Lambda}$

 $g_{\pi^{-}p}$

 $g_{\pi^0 n}$

 g_{nn}

 $g_{K^0\Sigma^0}$

 $g_{K^0\Lambda}$

 g_{π^-p}

 $g_{\pi^0 n}$

 q_{nn}

previous Fit 2 global $N^{*}(1535)$ $z_0 \, [\text{MeV}]$ 1537 - 37i1537 - 139i 1508 - 108i2.20 - 0.17 i2.66 - 0.91 i = 2.33 - 0.72 i $g_{K+\Sigma^{-}}$ -1.90 + 0.64 i -1.66 + 0.51 i-1.56 + 0.12i1.39 - 0.08 i0.94 - 0.55 i = 1.04 - 0.43 i0.56 + 0.33 i1.42 + 0.46 i 1.04 + 0.39 i-1.00 - 0.33 i -0.73 - 0.28 i-0.39 - 0.24i $-1.45 \pm 0.44 i$ -2.42 + 1.05 i -2.50 + 1.19 i $N^{*}(1650)$ $z_0 \, [\text{MeV}]$ 1655 - 59i 1662 - 59i $0.79 \pm 0.65 i = 0.92 \pm 0.34 i$ $g_{K+\Sigma^{-}}$ -0.56 - 0.47 i -0.65 - 0.24 i-0.49 + 0.91 i -0.60 + 0.90 i-0.89 + 0.48 i -0.75 + 0.21 i0.63 - 0.34i = 0.54 - 0.15i

-0.08 + 0.32 i = 0.26 + 0.77 i

