Search for new Baryon States at ELSA

Volker Credé

Florida State University Tallahassee, FL

Narrow Nucleon Resonances: Predictions, Evidences, Perspectives

Edinburgh, June 9th, 2009

< □ > < 同 > < 回 > < 回 > < 回 >

Outline

Introduction

- 2 Photoproduction of a Single Pseudoscalar Meson
 - η Photoproduction (off the Proton)
 - η' Photoproduction
 - π^0 Photoproduction (in the Forward Direction)
- Toward Complete ExperimentsWhat do we need?
- 4 Summary and Outlook

Outline

- 2 Photoproduction of a Single Pseudoscalar Meson
 - η Photoproduction (off the Proton)
 - η' Photoproduction
 - π^0 Photoproduction (in the Forward Direction)
- Toward Complete ExperimentsWhat do we need?
- 4 Summary and Outlook

(日)

One of the Main Goals of the N^* Program ...

Search for missing or yet unobserved resonances

Quark models predict many more baryons than have been observed

	****	***	**	*
N Spectrum	11	3	6	2
Δ Spectrum	7	3	6	6

Possible solutions:

1. Quark-diquark structure

one of the internal degrees of freedom is frozen

- \Rightarrow according to PDG
 - (Phys. Rev. D66 (2002) 010001)
- ⇒ little known (many open questions left)
- 2. Have not been observed, yet

Nearly all existing data result from πN scattering experiments

 If the missing resonances did not couple to Nπ, they would not have been discovered!!

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

3

One of the Main Goals of the N^* Program ...

Search for missing or yet unobserved resonances

Quark models predict many more baryons than have been observed

	****	***	**	*
N Spectrum	11	3	6	2
Δ Spectrum	7	3	6	6

Possible solutions:

1. Quark-diquark structure

one of the internal degrees of freedom is frozen \Rightarrow according to PDG

(Phys. Lett. B 667, 1 (2008))

- ⇒ little known (many open questions left)
- 2. Have not been observed, yet

Nearly all existing data result from πN scattering experiments

 If the missing resonances did not couple to Nπ, they would not have been discovered!!

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

∃ \0<</p> \0

Possible Quark-Diquark Structure?

Regge trajectory for Δ^* states with intrinsic spin S = 1/2 and S = 3/2, and for N* states with spin S = 3/2 (M^2 versus *L*, not *J*)

- Common Regge trajectory for N/ Δ states with S = 3/2
- Not shown, but slope of the Regge trajectory for meson and Δ excitations is identical
- → Are baryons quark-diquark excitations?

★ ∃ ▶ ★

< 一 →

Nucleon Resonances: Status of 2001

- S. Capstick and N. Isgur, Phys. Rev. D34 (1986) 2809

Introduction

Photoproduction of a Single Pseudoscalar Meson Toward Complete Experiments Summary and Outlook

 η Photoproduction (off the Proton)

- Photoproduction
- $\pi^{f 0}$ Photoproduction (in the Forward Direction)

Outline

Introduction

2 Photoproduction of a Single Pseudoscalar Meson

- η Photoproduction (off the Proton)
- η' Photoproduction
- π^0 Photoproduction (in the Forward Direction)
- Toward Complete ExperimentsWhat do we need?
- Summary and Outlook

(日)

- η Photoproduction (off the Proton)
- ? Photoproduction
- π^0 Photoproduction (in the Forward Direction)

The CB-ELSA/TAPS Experiment

amorphous radiators

screen

empty position

wires for determination of beam profiles

diamond crystal

Sep. 2002 – Dec. 2003

- (un)polarized beam
- liquid H₂, deuterium
- solid targets

512 BaF Crystals

- Forward detector
 - High GranularityFast Trigger

- η Photoproduction (off the Proton)
- Photoproduction
- π^0 Photoproduction (in the Forward Direction)

CB-ELSA/TAPS Experimental Setup of 2002/2003

 η Photoproduction (off the Proton)

- Photoproduction
- π^{0} Photoproduction (in the Forward Direction)

Study of $\gamma p \rightarrow p\eta$ with CB-ELSA/TAPS

V. Credé

 η Photoproduction (off the Proton)

- Photoproduction
- π^0 Photoproduction (in the Forward Direction)

Study of $\gamma p \rightarrow p\eta$ with CB-ELSA/TAPS

 $\left\{ \begin{array}{l} \eta \ \rightarrow \ \mathbf{3}\pi^{\mathbf{0}}, \gamma\gamma \\ (\mathsf{CB}\text{-}\mathsf{ELSA}/\mathsf{TAPS}) \end{array} \right.$

Reconstruction

- Number of photons: $N_{\gamma} = 2, 6$
- Proton identification: TAPS and inner scintillating fibre detector
 - → Missing proton kinematic fit
- Data quality
 - 422,300 events for $\eta \rightarrow \gamma \gamma$: $\sigma \approx 13 \text{ MeV}$
 - 126,300 events for $\eta \rightarrow 3\pi^0$: $\sigma \approx 10 \text{ MeV}$

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

 η Photoproduction (off the Proton)

Photoproduction

 π^0 Photoproduction (in the Forward Direction)

Study of $\gamma p \rightarrow p\eta$ (2008 Data from CB-ELSA/TAPS)

 η Photoproduction (off the Proton)

Photoproduction

 π^{0} Photoproduction (in the Forward Direction)

Introduction Photoproduction of a Single Pseudoscalar Meson Toward Complete Experiments Summary and Outlook

Study of $\gamma p \rightarrow p\eta$ (2008 Data from CB-ELSA/TAPS)

 η Photoproduction (off the Proton)

Photoproduction

 π^{0} Photoproduction (in the Forward Direction)

Introduction Photoproduction of a Single Pseudoscalar Meson Toward Complete Experiments Summary and Outlook

Study of $\gamma p \rightarrow p\eta$ (2008 Data from CB-ELSA/TAPS)

 η Photoproduction (off the Proton)

- Photoproduction
- π^0 Photoproduction (in the Forward Direction)

Analysis of $\gamma p \rightarrow p\eta$: Total Cross Section

Isopsin Filter

→ Only N* resonances can contribute!

Bonn-Gatchina (PWA) group: Hint for N* resonance $(2070)D_{15}$ (Phys. Rev. Lett. **D94**, 012004 (2005))

프 🖌 🛪 프 🕨

Three resonances are dominantly contributing: $N(1535)S_{11}$, $N(1720)P_{13}$, $N(2070)D_{15}$

 η Photoproduction (off the Proton)

- Photoproduction
- π^0 Photoproduction (in the Forward Direction)

Partial Wave Analysis: $\gamma p \rightarrow p \eta$

- PWA: Operator (Tensor) Formalism (Rarita–Schwinger)
 - Many data sets included
 - Cross section data and polarization observables
 - Solutions not unique

Observables	Reference	N _{data}	χ^2/N
$\sigma(\gamma \mathrm{p} ightarrow \mathrm{p} \eta)$	CB-ELSA	667	0.91
$\sigma(\gamma p \rightarrow p\eta)$	TAPS	100	1.6
$\Sigma(\gamma p \rightarrow p\eta)$	GRAAL 98	51	2.27
$\Sigma(\gamma p \rightarrow p\eta)$	GRAAL 04	100	1.75
$\sigma(\gamma p ightarrow p \pi^0)$	CB-ELSA	1106	1.50
$\Sigma(\gamma p \rightarrow p \pi^0)$	GRAAL 04	469	3.43
$\Sigma(\gamma p \rightarrow p \pi^0)$	SAID	593	2.87
$\sigma(\gamma p \rightarrow n\pi^+)$	SAID	1583	2.86

Resonance	M (MeV)	Г (MeV)	Fraction
N(1520)D ₁₃	1523 ± 4	105^{+6}_{-18}	0.020
PDG	1520^{+10}_{-5}	120^{+15}_{-10}	
N(1535)S ₁₁ *	1501 ± 5	215 ± 25	
PDG	1505 \pm 10	170 ± 80	0.430
N(1650)S ₁₁ *	1610 ± 10	190 ± 20	0.400
PDG	1660 ± 20	160 ± 10	
N(1675)D ₁₅	1690 ± 12	125 ± 20	0.001
PDG	1675^{+10}_{-5}	150^{+30}_{-10}	
N(1680)F ₁₅	1669 ± 6	85 ± 10	0.005
PDG	1680^{+10}_{-5}	130 ± 10	
N(1700)D ₁₃	1740 ± 12	84 ± 16	0.004
PDG	1700 ± 50	100 ± 50	
N(1720)P ₁₃	1775 \pm 18	325 ± 25	0.300
PDG	1720^{+30}_{-70}	250 ± 50	
N(2000)F ₁₅	1950 \pm 25	230 ± 45	0.007
N(2070)D ₁₅	2068 ± 22	295 ± 40	0.171
N(2080)D ₁₃	1943 ± 17	82 ± 20	0.011
N(2200)P ₁₃	2214 ± 28	360 ± 55	0.051

* K-Matrix Fit,

Fraction for the total K-matrix contribution

ヘロト 人間 ト イヨト イヨト

= nar

V. Credé

 η Photoproduction (off the Proton)

- Photoproduction
- π^0 Photoproduction (in the Forward Direction)

Analysis of $\gamma p \rightarrow p\eta$: Total Cross Section

Isopsin Filter

→ Only N* resonances can contribute!

Bonn-Gatchina (PWA) group: Hint for N* resonance (2070)*D*₁₅ (Phys. Rev. Lett. **D94**, 012004 (2005))

- Confirmed in 2009 analysis!
- ② $N(1720)P_{13} \rightarrow p\eta$? → η -MAID:
 - $N(1710)P_{11} \rightarrow p\eta$ significant!

・ コ マ チ (雪 マ チ (雪 マ ー)

Resonances dominantly contributing: *N*(1535)*S*₁₁, (*N*(1720)*P*₁₃)[?], *N*(2070)*D*₁₅

 η Photoproduction (off the Proton)

Analysis of $\gamma p \rightarrow p\eta$: Total Cross Section

Isopsin Filter

→ Only N* resonances can contribute!

Bonn-Gatchina (PWA) group: Hint for N^{*} resonance $(2070)D_{15}$ (Phys. Rev. Lett. D94, 012004 (2005))

- Confirmed in 2009 analysis!
- 2 $N(1720)P_{13} \rightarrow p\eta$? \rightarrow η -MAID:
 - $N(1710)P_{11} \rightarrow p\eta$ significant!

< □ > < 同 > < 回 > < 回 > < 回 >

 $M \approx 1720 \,\mathrm{MeV}/c^2$

 η Photoproduction (off the Proton)

- Photoproduction
- π^0 Photoproduction (in the Forward Direction)

Beam Asymmetry Σ in the Reaction $\vec{\gamma} p \rightarrow p \eta$

Higher sensitivity due to interference effects: $\Sigma \sim A_{1/2}(S_{11}) * A_{1/2}(P_{13}) + ...$

D. Elsner et al., EPJ A33 (2007) 147

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

э

R. Beck, Talk at N* 2009

 η Photoproduction (off the Proton)

 η' Photoproduction

 π^0 Photoproduction (in the Forward Direction)

Study of $\gamma p \rightarrow p \eta'$ with CB-ELSA/TAPS

Isospin Filter: only N* resonances can contribute

- **1968**: 11 events from the ABBHHM bubble chamber experiment
- 1976: 7 events from the AHHM streamer chamber experiment
- 1998: 250 events from SAPHIR collaboration

→ First differential cross sections

- 2006: over $2 \cdot 10^5$ events from CLAS (Contributions from N(1535)S₁₁, N(1710)P₁₁, J = 3/2 states)
- 2008: New data from CBELSA/TAPS over the full angular range

No published asymmetry data for η' ... (Data available from CLAS and ELSA)

< 日 > < 同 > < 回 > < 回 > < □ > <

3

 η Photoproduction (off the Proton)

 η ' Photoproduction

 π^0 Photoproduction (in the Forward Direction)

Linearly-Polarized Beam at JLab: g8b Run Group

 η Photoproduction (off the Proton)

 η' Photoproduction

 π^{0} Photoproduction (in the Forward Direction)

Study of $\gamma \rho \rightarrow \rho \eta'$ with CB-ELSA/TAPS

V. Credé

Reconstruction of η' :

- Kinematic Fitting to $\gamma p \to p \pi^0 \eta \gamma \gamma$
- Mass window for remaining π^0 : 110 < $m_{\gamma\gamma}$ < 160 MeV
- Mass window for η' : 910 < $m_{\pi^0\pi^0\eta}$ < 1010 MeV

 η Photoproduction (off the Proton)

 η ' Photoproduction

 π^0 Photoproduction (in the Forward Direction)

Differential Cross Sections for $\gamma p \rightarrow p \eta'$

Introduction

Photoproduction of a Single Pseudoscalar Meson

Toward Complete Experiments

 η Photoproduction (off the Proton)

 η ' Photoproduction

 π^0 Photoproduction (in the Forward Direction)

Study of $\gamma p \rightarrow p \eta'$ Threshold

 η Photoproduction (off the Proton)

 η ' Photoproduction

 π^{0} Photoproduction (in the Forward Direction)

Threshold Behavior of $\gamma p \rightarrow p \eta'$

 η Photoproduction (off the Proton)

 η ' Photoproduction

 π^0 Photoproduction (in the Forward Direction)

Threshold Behavior of $\gamma p \rightarrow p \eta'$

 η Photoproduction (off the Proton)

⁷ Photoproduction

 π^0 Photoproduction (in the Forward Direction)

Differential Cross Sectionsss for $\gamma p \rightarrow p \pi^0$

V. Credé

 η Photoproduction (off the Proton)

' Photoproduction

 π^0 Photoproduction (in the Forward Direction)

Differential Cross Sections for $\gamma p \rightarrow p \pi^0$

V. Credé

Search for new Baryon States at ELSA

 η Photoproduction (off the Proton)

' Photoproduction

 π^0 Photoproduction (in the Forward Direction)

Differential Cross Sections for $\gamma p \rightarrow p \pi^0$

V. Credé

Search for new Baryon States at ELSA

 η Photoproduction (off the Proton)

' Photoproduction

 π^0 Photoproduction (in the Forward Direction)

Differential Cross Sections for $\gamma p \rightarrow p \pi^0$

CB-ELSA Collaboration, PRL D94, 012003 (2005)

Introduction

Photoproduction of a Single Pseudoscalar Meson

Toward Complete Experiments Summary and Outlook η Photoproduction (off the Proton)

' Photoproduction

 π^0 Photoproduction (in the Forward Direction)

Beam Asymmetries for $\gamma p \rightarrow p \pi^0$

 η Photoproduction (off the Proton)

' Photoproduction

 π^0 Photoproduction (in the Forward Direction)

Beam Asymmetries for $\gamma p \rightarrow p \pi^0$

CBELSA/TAPS Collaboration, Eur.Phys.J. A39, (2009) 373-381

 η Photoproduction (off the Proton)

' Photoproduction

 π^0 Photoproduction (in the Forward Direction)

Beam Asymmetries for $\gamma p \rightarrow p \pi^0$

 η Photoproduction (off the Proton)

' Photoproduction

 π^0 Photoproduction (in the Forward Direction)

Beam Asymmetries for $\gamma p \rightarrow p \pi^{0}$

What do we need?

Outline

Introduction

- 2 Photoproduction of a Single Pseudoscalar Meson
 - η Photoproduction (off the Proton)
 - η' Photoproduction
 - π^0 Photoproduction (in the Forward Direction)
- Toward Complete ExperimentsWhat do we need?
- Summary and Outlook

(New) Baryon Resonances: Bonn-Gatchina PWA

Reaction	Resonaces			
$\gamma p ightarrow N \pi$	$\Delta(1232)P_{33}$	N(1520)D ₁₃	N(1680)F ₁₅	N(1535)S ₁₁
$\gamma {oldsymbol p} o {oldsymbol p} \eta$	N(1535)S ₁₁	N(1720)P ₁₃	N(2070)D ₁₅	$N(1650)S_{11}$
$\gamma {oldsymbol ho} o {oldsymbol ho} \pi^0 \pi^0$	$\Delta(1700)D_{33}$	N(1520)D ₁₃	N(1680)F ₁₅	
$\gamma p ightarrow p \pi^0 \eta$	∆(1940) <i>D</i> ₃₃	$\Delta(1920)P_{33}$	N(2200)P ₁₃	$\Delta(1700)D_{33}$
$\gamma p ightarrow \Lambda K^+$	S ₁₁ – wave	N(1720)P ₁₃	N(1900)P ₁₃	N(1840)P ₁₁
$\gamma p ightarrow \Sigma K$	S ₁₁ – wave	N(1900)P ₁₃	<i>N</i> (1840) <i>P</i> ₁₁	
$\pi^- p ightarrow n \pi^0 \pi^0$	N(1440)P ₁₁	N(1520)D ₁₃	S ₁₁ – wave	

The available data sets comprising various high-statistics differential cross sections, beam, target, recoil asymmetries, double polarization observables, and also data resolving isospin contributions are not yet sufficient to converge into a unique solution.

< ロ > < 同 > < 回 > < 回 > < □ > <

What do we need?

Ingredients

• Measurements off neutron and proton to resolve isospin contributions

- Re-scattering effects: Large number of measurements (and also final states) needed to define the full scattering amplitude
- Double-polarization measurements

Chiang & Tabakin, Phys. Rev. C55, 2054 (1997)

In order to determine the full scattering amplitude without ambiguities, one has to carry out eight carefully selected measurements: <u>four</u> double-spin observables along with the <u>four</u> single-spin observables.

< ロ > < 同 > < 回 > < 回 > .

What do we need?

Helicity-Dependent Cross Section: $\vec{\gamma} \, \vec{p} \rightarrow p \eta$

< □ > < 同 >

→ ∃ > < ∃ >

What do we need?

Helicity-Dependent Cross Section: $\vec{\gamma} \, \vec{p} \rightarrow p \eta$

Preliminary results (M. Gottschall)

・ コ マ チ (雪 マ チ (雪 マ ー)

э

Outline

Introduction

- 2 Photoproduction of a Single Pseudoscalar Meson
 - η Photoproduction (off the Proton)
 - η' Photoproduction
 - π^0 Photoproduction (in the Forward Direction)
- Toward Complete ExperimentsWhat do we need?
- 4 Summary and Outlook

(日)

Summary and Outlook

Photoproduction of neutral mesons with the CBELSA/TAPS detector

- Full angular coverage for η and η' production
 - → Confirmation of $D_{15}(2070) \rightarrow p\eta$
- No evidence for narrow state at $M \approx 1685 \text{ MeV}/c^2$
- Excellent coverage for the π^0 in the very forward direction
- Contributions for new results from Aaron McVeigh, Nathan Sparks, Anna Woodard

・ 同 ト ・ ヨ ト ・ ヨ ト

Summary and Outlook

Photoproduction of neutral mesons with the CBELSA/TAPS detector

- Full angular coverage for η and η' production
 → Confirmation of D₁₅(2070) → pη
- No evidence for narrow state at $M \approx 1685 \text{ MeV}/c^2$

HADRON 2009 Nov. 29 - Dec. 4

Tallahassee, Florida Florida State University

(日)