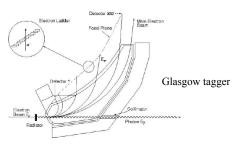
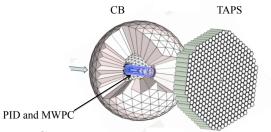
Neutron Detection Efficiency of Crystal Ball and TAPS Z.Marinides,B.Demissie George Washington University, United States



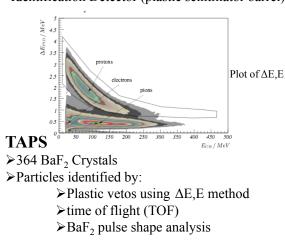
Beam Properties

The photon beam is an ideal probe to investigate nucleons because of its well understood properties. The 100% duty factor MAMI electron beam is converted to a photon beam via the Bremsstrahlung process in a thin radiator. The photons are energytagged by the Glasgow Photon Tagger.


MAMI Energy	≤1557MeV
Current	≤ 100µA
Energy Resolution	\leq 400keV
RIME Bijeter Them. Source Inter + Pol. Source MAMI floor plan Spectrometer	
Photon Beam	
Energy Resolution	<4MeV

Photon Beam	
Energy Resolution	\leq 4MeV
Circular Polarization	up to 85%
Linear polarization	up to75%

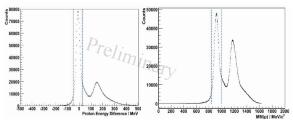
Crystal Ball and TAPS



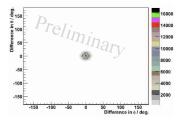
CB

≻672 NaI Crystals

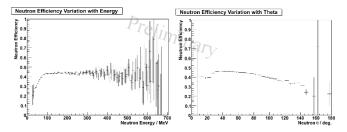
≻Charged particles tracked with MWPC
>Particles identified by ∆E,E using the Particle Identification Detector (plastic scintillator barrel)



Neutron Efficiency Analysis


The aim of this project is to accurately measure the neutron detection efficiency of the Crystal Ball. The result is important in determining cross sections and testing the accuracy of simulations for channels such as double π^0 and $\pi^0 \eta$ production on the neutron.

Efficiency Determination


Select kinematically over-determined reactions: $d(\gamma,p)n$ and $d(\gamma,p, \pi^0)n$. Base event selection on proton (and π^0) information alone.

>Determine in which of those events neutrons are actually detected.

Neutron Efficiency = events with neutron detection / all selected events
Efficiency determined as a function of neutron energy, theta and phi.

