Conceptual Design of A Medium Energy Polarized Electron-Ion Collider at JLab

Yuhong Zhang

for Jefferson Lab EIC Study Group

Physics with Secondary Hadron Beams in the 21st Century April 7, 2012, Ashburn, VA

Electron-Ion Collider (EIC) at JLab

- Over the decade, JLab has been developing a conceptual design of an EIC as its future science program beyond 12 GeV CEBAF upgrade
- The future science program, as NSAC LRP articulates, drives the EIC design, focusing on:
 - High luminosity (above 10³³ cm⁻²s⁻¹) per detector over multiple detectors
 - High polarization (>80%) for electrons and (>70%) for light ions
- Presently, we focus on a Medium-energy Electron-Ion Collider (MEIC) as an immediate goal, as the best compromise between science, technology and project cost
- We maintained a well defined path for future upgrade to higher energies and high luminosity
- The JLab EIC machine design is based on
 - CEBAF as full-energy electron injector

Jefferson Lab

• A new ion complex and collider rings optimized for polarization

Physics with Secondary Hadron Beams in the 21st Century, April 7, 2012

MEIC Design

• Energy

- Full coverage in s from a few hundred to a few thousand Bridging the gap of 12 GeV CEBAF and HERA/LHeC
- Electron 3 to 11 GeV, proton 20 to 100 GeV, ion 12 to 40 GeV/u
- Design point: 60 GeV proton on 5 GeV electron

Ion species

- Polarized light ion: p, d, ³He and possibly Li
- Un-polarized ions up to A=200 or so (Au, Pb)

Detectors

- Up to three interaction points, two for medium energy (20 to 100 GeV)
- One *full-acceptance* detector (primary), 7 m between IP & 1st final focusing quad, our initial priority with a more challenging design
- One high luminosity detector (secondary), 4.5 m between IP and 1st final focusing quad

MEIC Design (cont.)

Luminosity

- About 10³⁴ cm⁻² s⁻¹ (e-nucleon) optimized at s=2000 GeV²
- Greater than 10^{33} cm⁻² s⁻¹ for s=500-2500 GeV²

Polarization

- Longitudinal at the IP for both beams
- Transverse at IP for ions only
- All polarizations >70% desirable
- Spin-flip of both beams (at least 0.1 Hz) being developed

Upgradeable to higher energies and luminosity

- 20 GeV electron, 250 GeV proton and 100 GeV/u ion,
- facility fits the JLab site

Positron beam highly desirable

• Positron-ion collisions with similar luminosity

MEIC Layout

Physics with Secondary Hadron Beams in the 21st Century, April 7, 2012

MEIC and Upgrade on JLab Site Map

Physics with Secondary Hadron Beams in the 21st Century, April 7, 2012

Luminosity Concept: High Bunch Repetition Rate

Luminosity of KEKB and PEP II follow from

- Very small β^* (~6 mm)
- Very short bunch length ($\sigma_z \sim \beta^*$)
- Very small bunch charge (5.3 nC)
- High bunch repetition rate (509 MHz)

→ KEK-B already over 2x10³⁴ /cm²/s

JLab is poised to replicate same success in electron-ion collider:

- A high repetition rate electron beam from CEBAF
- A new ion complex (so can match e-beam)
- Electron cooling to allow short ion bunches

		KEK B	MEIC
Repetition rate	MHz	509	750
Particles per bunch	10 ¹⁰	3.3 / 1.4	0.42 / 2.5
Beam current	А	1.2 / 1.8	0.5 / 3
Bunch length	cm	0.6	1 / 0.75
Horizontal & vertical β*	cm	56/0.56	10/2
Luminosity per IP, 10 ³³	cm ⁻² s ⁻¹	20	5.6 ~ 14

Physics with Secondary Hadron Beams in the 21st Century, April 7, 2012

Parameters for *Full Acceptance* Interaction Point

		Proton	Electron
Beam energy	GeV	60	5
Collision frequency	MHz	750	750
Particles per bunch	10 ¹⁰	0.416	2.5
Beam Current	А	0.5	3
Polarization	%	> 70	~ 80
Energy spread	10-4	~ 3	7.1
RMS bunch length	mm	10	7.5
Horizontal emittance, normalized	µm rad	0.35	54
Vertical emittance, normalized	µm rad	0.07	11
Horizontal β*	cm	10	10
Vertical β*	cm	2	2
Vertical beam-beam tune shift		0.014	0.03
Laslett tune shift		0.06	Very small
Distance from IP to 1 st FF quad	m	7	3.5
Luminosity per IP, 10 ³³	cm ⁻² s ⁻¹		5.6

Physics with Secondary Hadron Beams in the 21st Century, April 7, 2012

Parameters for *High Luminosity* Interaction Point

		Proton	Electron
Beam energy	GeV	60	5
Collision frequency	MHz	750	750
Particles per bunch	10 ¹⁰	0.416	2.5
Beam Current	А	0.5	3
Polarization	%	> 70	~ 80
Energy spread	10-4	~ 3	7.1
RMS bunch length	mm	10	7.5
Horizontal emittance, normalized	µm rad	0.35	54
Vertical emittance, normalized	µm rad	0.07	11
Horizontal β*	cm	4	4
Vertical β*	cm	0.8	0.8
Vertical beam-beam tune shift		0.014	0.03
Laslett tune shift		0.06	Very small
Distance from IP to 1 st FF quad	m	4.5	3.5
Luminosity per IP, 10 ³³	cm ⁻² s ⁻¹		14.2

Physics with Secondary Hadron Beams in the 21st Century, April 7, 2012

The Current Design Status

The electron complex

- CEBAF as a full energy injector
 - Already exist! Possible top-off mode
- Electron collider ring
 - Linear optics design: done!

The ion Complex

- Ion sources
 - Identified ABPIS for polarized H⁻/D⁻, light ions
 - Identified ECR/EBIS for heavy ions ٠
- Linac
 - Technical design: done!
 - Design of component (RFQ, cavity, etc): done!
- Pre-booster
 - Linear optics design: done! ٠
 - Injection, accumulation, acceleration: done!
 - Conventional DC electron cooling exist!
- Large booster
 - Ring optics design: done!
- Ion collider ring
 - Llinear optics design: done!

Interaction region

- Electron IR
 - Optics design & chromatic correction: done!
 - Tracking & dynamic aperture: in progress
- Ion IR
 - Optics design & chromatic correction: done!
 - Tracking & dynamic aperture: in progress!
- Crab cavity: Has a design!
- SR and detector background: checked!
- Beam polarization
 - Electron polarization design: done!
 - Proton/deuteron polarization design: done!
 - Spin matching & tracking: in progress!
- Electron cooling in collider ring
 - Staged electron cooling concept: done!
 - ERL-circulator e-cooler concept: done!
 - Fast kicker development: has a concept
- Beam synchronization: done!

10 Physics with Secondary Hadron Beams in the 21st Century, April 7, 2012

MEIC Design Details

Our present design is *mature*, having addressed -- in various degrees of detail -- the following important aspects of MEIC:

- Forming the high-intensity ion beam: SRF linac, pre and large booster
- Electron and ion ring optics
- Detector design
- IR design and optics
- Chromaticity compensation
- Crab crossing
- Synchrotron rad. background
- Ion polarization
- Electron polarization
- Electron cooling
- Beam synchronization
- Beam-beam simulations

Physics with Secondary Hadron Beams in the 21st Century, April 7, 2012

A New Ion Complex

MEIC ion complex design goal

- Be able to generate/accumulate and accelerate ion beams for collisions
- Covering all required varieties of ion species
- Matching the time, spatial and phase space structure of the electron beam (bunch length, transverse emittance and repetition

	Length (m)	Max. energy (GeV/c)	e-Cooling	Process
SRF linac		0.2 (0.08)		
Pre-booster	~300	3 (1.2)	DC	accumulating
booster	~1350	20 (8 to 15)		
collider ring	~1350	96 (40)	Staged/ERL	

* Numbers in parentheses represent energies per nucleon for heavy ions

MEIC "Full-Acceptance" Detector

Jefferson Lab

Physics with Secondary Hadron Beams in the 21st Century, April 7, 2012

Detector Integration

- Large 50 mrad crossing angle: improved detection, fast beam separation
- Forward small-angle hadrons pass through large-aperture final focusing quads before detection
- Final Focusing Block/spectrometer dipole combo optimized for acceptance and detector resolution

Physics with Secondary Hadron Beams in the 21st Century, April 7, 2012

Interaction Region: Ions

- Distance from the IP to the first FF quad = 7 m
- Maximum quad pole tip field at 100 GeV/c = 6T
 - Allows ±0.5° forward detection

Jefferson Lab

- Evaluating detailed detector integrationand positions of collimators
- Symmetric CCB design for efficient chromatic correction

Whole Interaction Region: 158 m

15

Physics with Secondary Hadron Beams in the 21st Century, April 7, 2012

Crab Crossing

- Restore effective head-on bunch collisions with 50 mrad crossing angle \Rightarrow Preserve luminosity
- Dispersive crabbing (regular accelerating / bunching cavities in dispersive region) vs. Deflection crabbing (novel TEM-type SRF cavity at ODU/JLab, very promising!)

Physics with Secondary Hadron Beams in the 21st Century, April 7, 2012

Electron Cooler

- Conventional electron cooling
- Staged electron cooling scheme
- ERL based to relax power and cathode requirements

Physics with Secondary Hadron Beams in the 21st Century, April 7, 2012

The First Design of MEIC ERL Circulator Cooler

recirculation/decompression

Cooling Test Facility

TeleforRow drate Eren Elgyt Coincludation Facybitem

- 1) Determine lifetime of a bunch in the circulator ring.
- 2) Examine feasability of magnetized electron gun.
- 3) Test fast kickers, currently under development.
- 4) Beam dynamics of an ERL with recirculation.

Summary

- Close and frequent collaboration with our nuclear physics colleagues regarding the machine, interaction region and detector requirements have taken place. This has led to agreed-upon baseline parameters:
 - Energy range: 3 to 11 GeV electrons, 20 to 100 GeV protons
 - Luminosity around 10³⁴ cm⁻² s⁻¹ (e-nucleon) per interaction point
 - Longitudinally polarized (~80%) electrons, longitudinally or transversely polarized (>70%) protons and deuterons
- Ring layouts for MEIC have been developed, which include two interaction regions, one full acceptance, one high luminosity.
- Chromatic compensation for the baseline parameters has been achieved in the design. Significant progress has been made with determining and optimizing the dynamic aperture.
- Designs for staged Electron cooling have been developed and will be tested using the Jefferson Lab FEL.

JLab EIC Study Group

A. Accardi, S. Ahmed, A. Bogacz, P. Chevtsov, Ya. Derbenev, D. Douglas, R. Ent, V. Guzey, T. Horn, A. Hutton, C. Hyde, G. Krafft, R. Li, F. Lin, F. Marhauser, R. McKeown, V. Morozov, P. Nadel-Turonski, E. Nissen, F. Pilat, A. Prokudin, R. Rimmer, T. Satogata, M. Spata, C. Tennat, B. Terzić, H. Wang, C. Weiss, B. Yunn, Y. Zhang --- Thomas Jefferson National Accelerator Facility

J. Delayen, S. DeSilva, H. Sayed, -- Old Dominion University

M. Sullivan, -- Stanford Linear Accelerator Laboratory

S. Manikonda, P. Ostroumov, -- Argonne National Laboratory

S. Abeyratne, B. Erdelyi, -- Northern Illinois University

V. Dudnikov, R. Johnson, -- Muons, Inc

A. Kondratenko, -- STL "Zaryad", Novosibirsk, Russian Federation

Y. Kim -- Idaho State University

MEIC Layout

Physics with Secondary Hadron Beams in the 21st Century, April 7, 2012

MEIC Electron Ring Footprint

Jefferson Lab

Physics with Secondary Hadron Beams in the 21st Century, April 7, 2012 23

