Resonances vs Backgrounds: role of MN scattering

Adam Szczepaniak, IU

There is a world wide effort in hadron spectroscopy JLab, BESIII, COMPASS, PANDA, Super-B,...

Amplitude analysis is hard ! There is no one-size-fits all prescription and the more constraints the better

 πN , ηN , KN, ... both elastic and inelastic play central role in constraining backgrounds

Examples:

 3π production and the role of πN scattering in extraction of the a_1 (relevance for π_1 spin-exotic)

* πη production (ηN scattering) and searches for spin-exotics

* state of the art full spectrum

* state of the art full spectrum

$M = \frac{G}{2} + \rho = 0.8 + 0.75 \sim 1.6 GeV$

Chiral extrapolations 100-200 MeV (Thomas, APS)

In large-Nc same as for ordinary mesons O(1/Nc) (Cohen)

1 ⁻⁺ (1.8 GeV)	b1 π	f1 π	ρπ	
PSS	573 D1	59 D0.04	P 13	Γ MeV
IKP	5 51 D 11	514 D7	P 12	

Isgur, Kokosky, Paton (85) Close, Page (95) Page, Swanson, Szczepaniak (99) Close, Dudek (04)

Preliminary (toy) lattice computation of decay widths agrees with models (Michael,McNeile) (Burns,Close)

1.5

Dominant PW's $\eta\pi$ in S : a_0 $\eta\pi$ in D : a_2

"some" exotic wave but nature cannot be established without a dynamical model

$\pi_1(1600)$ in $\pi^+\pi^-\pi^-$

Duality: Resonances vs Forces

Figure 11: Fit to the 1⁺ $\rho\pi$ intensity from $\pi^- p \to \pi^- \pi^- \pi^+ p$ at $E_{\pi} = 25$ and $E_{\pi} = 40$ GeV, CERN data [70], with (left) both long-range production from one pion exchange and short-range direct production and (right) short-range direct production only [63].

Moving $\pi_2(1670)$ peak

VALUE	(MeV)		EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1672	4± 3.:	2 OUR A	VERAGE	Error includes sca	le fa	ctor of 1	1.4. Se	e the ideogram below.
1749	±10	±100	145k	LU	05	E852		$18 \pi^- p \rightarrow \omega \pi^- \pi^0 p$
1676	± 3	± 8		¹ CHUNG	02	E852		$18.3 \pi^- p \rightarrow$
1685	±10	± 30		² BARBERIS	01			$450 pp \rightarrow$
1687	± 9	± 15		AMELIN	99	VES		$p_f 3\pi^- p_s$ $37 \pi^- A \rightarrow \mu \pi^- \pi^0 A^*$
1669	± 4			BARBERIS	98B			$450 pp \rightarrow p_f \rho \pi p_e$
1670	± 4			BARBERIS	98B			450 pp →
								$p_{f} f_{2}(1270) \pi p_{s}$
1730	±20			³ AMELIN	95B	VES		$36 \pi^- A \rightarrow \pi^+ \pi^- \pi^- A$
1690	±14			⁴ BERDNIKOV	94	VES		$37 \pi^- A \rightarrow$
1710	±30		700	ANTIPOV	87	SIGM	-	$50 \pi^- Cu \rightarrow$
1676	± 6			⁴ EVANGELISTA	81	OMEG	_	$12 \pi^- p \rightarrow 3\pi p$
1657	±14		4	^{1,5} DAUM	80D	SPEC	_	$63-94 \pi p \rightarrow 3\pi X$
1662	±10		2000	⁴ BALTAY	77	HBC	+	$15 \pi^+ p \rightarrow p 3\pi$
	We do	not use	the follow	ing data for averag	ges, f	fits, limit	ts, etc.	•••
1742	±31	± 49		ANTREASYAN	90	CBAL		$e^+e^- \rightarrow e^- \pi^0 \pi^0 \pi^0$
1624	±21			¹ BELLINI	85	SPEC		$40 \pi^{-}A \rightarrow A$
1622	±35			⁶ BELLINI	85	SPEC		$40 \pi^{-}A \rightarrow$
1693	±28			⁷ BELLINI	85	SPEC		$40 \pi^{-} A \rightarrow$
1710	± 20			⁸ DAUM	81B	SPEC	_	$\pi^-\pi^+\pi^-A$ 63.94 π^-p
1660	±10			⁴ ASCOLI	73	HBC	_	$5-25 \pi^- p \rightarrow p \pi_2$
						-		F . F
		~ *	ρ			P		N# 0 1
		~	\sim		Z	π		
			PE T		P	3		· *
			2			ş		
		N	- N		×	\sim	4	NN

Isobar-type fits could involve spurious resonances

Duality in $\eta(\cdot)\pi$

broad backgrounds possible

P-wave dominance expected (from 0⁻0⁻0⁻ +NPE)

 $T \sim \epsilon_{\mu\nu\alpha\beta} p_1^{\mu} p_2^{\nu} p_3^{\alpha} p_4^{\beta} \times \hat{T}(s_1, s_2, t_1, t_2)$

DOUBLE REGGE EXCHANGE PHENOMENOLOGY

T. SHIMADA and A.D. MARTIN Department of Physics, Durham University, UK

A.C. IRVING DAMTP, Liverpool University, UK

$$V_{1}(\eta, t_{1}, t_{2}) = \frac{1}{\Gamma(-\alpha_{1}) \Gamma(-\alpha_{2})} \sum_{n=0}^{\infty} \frac{1}{n!} \Gamma(-\alpha_{1} + n) \Gamma(-\alpha_{2} + \alpha_{1} - n) \eta^{-n} \\ \times \beta(\alpha_{1} - n, t_{1}, t_{2}),$$
(6)

with an identical expression for V_2 except that $\alpha_1 \leftrightarrow \alpha_2$. The minimal choice for the residue, $\beta(\lambda, t_1, t_2) = \beta_0$ with β_0 independent of λ , thus leads to the concise parametrization

$$V_{1} = \beta_{0} \frac{\Gamma(\alpha_{1} - \alpha_{2})}{\Gamma(-\alpha_{2})} {}_{1}F_{1}\left(-\alpha_{1}, 1 - \alpha_{1} + \alpha_{2}, -\frac{1}{\eta}\right)$$
(7)

and $V_2 = V_1(\alpha_1 \leftrightarrow \alpha_2)$. This agrees with the double Regge limit of the scalar dual amplitude [7].

R.C. Brower, C.E. DeTar, J.H. Weis, Regge theory for multiparticle amplitudes PHYSICS REPORTS (Section C of Physics Letters) 14, no. 6 (1974) 257-367.

The requirement that the amplitude is free of simultaneous discontinuities in two overlapping channel invariants leads to the general form [1]

$$T = \Gamma(-\alpha_1) \Gamma(-\alpha_2) [(-\alpha' s_1)^{\alpha_1} (-\alpha' s_2)^{\alpha_2 - \alpha_1} V_1(\eta, t_1, t_2) + (-\alpha' s_1)^{\alpha_2} (-\alpha' s_1)^{\alpha_1 - \alpha_2} V_2(\eta, t_1, t_2)], \qquad (3)$$

where the reggeon-reggeon-particle vertex functions, V_i , are regular functions of η .

Earlier analyses

E.L.Berger, J.Vergeest (1976)

DOUBLE EXCHANGE MODEL DESCRIPTION OF THE CHARGE EXCHANGE REACTION $K^-p \rightarrow K^*\pi^+n$

Earlier analyses

E.L.Berger, J.Vergeest (1976)

DOUBLE EXCHANGE MODEL DESCRIPTION OF THE CHARGE EXCHANGE REACTION $K^-p \rightarrow K^*\pi^+n$

Fig. 6. Distribution in the $(K^* \pi^+)$ invariant mass from $K^- p \rightarrow K^* \pi^+ n$ at 4.2 GeV/c for the sample with $|t_{pn}| \le 0.8 (\text{GeV/c})^2$. The theoretical curve is obtained from eq. (2.12) of the text and is normalized to the data in the region $M(K^*\pi) \le 1.28$ GeV.

Fig. 10. Distribution in t'_{pn} for events satisfying the selections $M(K^*\pi) \le 1.3 \text{ GeV}, M(n\pi^+) \ge 1.34 \text{ GeV}$, and $|t_{KK}^*| \le 0.3 (\text{GeV}/c)^2$.

Fig. 8. Distribution in t_{KK} *, with the same selections as in fig. 7.

Fig. 6. Distribution in the $(K^* \pi^+)$ invariant mass from $K^- p \rightarrow K^* \pi^+ n$ at 4.2 GeV/c for the sample with $|t_{pn}| \le 0.8$ (GeV/c)². The theoretical curve is obtained from eq. (2.12) of the text and is normalized to the data in the region $M(K^*\pi) \le 1.28$ GeV.

Fig. 11. Distributions in the decay angles of the K^* in the $(K^*\pi)$ rest frame for events satisfying the selections listed in the caption of fig. 10.

Meson-Nucleon scattering amplitudes are needed to determine backgrounds under resonances

"Technology" exists for a self-consistent PWA (FESR)

nN, a2 production: dual to exotic channels

K⁺p, K⁺n, dual to flavor exotic channels

Lesniak, Kaminski, Bibrzycki, AS

Fit to Daresbury, 4GeV data

35

30

25

20

15

10

5

0

0

-1

-2

-3

µb/GeV

µb/GeV

First measurement of direct $f_0(980)$ photoproduction on the proton (The CLAS Collaboration)

 $a(s) = \left[\frac{1+S(s)}{2}\right]a_L(s) - \frac{1}{D(s)}P.V.\int_{s_{th}}\frac{ds'}{\pi}\frac{\rho(s')N(s')a_L(s')}{s'-s}$

[25] L. Bibrzycki, L. Lesniak and A. P. Szczepaniak, Eur.

[26] C. R. Ji et al., Phys. Rev. C 58, 1205 (1998).

Phys. J. C 34, 335 (2004).

separation between direct resonance production and fsi ambiguous without KK data

FIG. 3: Partial wave differential cross sections $d\sigma/dt$ in the photon energy range $E_{\gamma} = 3.0 - 3.8$ GeV, for the *P*-wave (solid dots) and *S*-wave (open circles) integrated in the $M_{\pi\pi}$ mass range 0.4-1.2 GeV and 0.98 \pm 0.04 GeV, respectively. The error bars include statistical and systematic uncertainties summed in quadrature. The line is a model prediction for the *S*-wave from Ref. [25, 26].