Do we have sufficient data for an amplitude analysis of meson production?

K. Nakayama University of Georgia

Collaboration:

> EIC Workshop: Physics with Secondary Hadron Beams in 21st Century April 7, 2012, GWU

Hadron Spectroscopy: to help ultimately understand the confinement property of QCD

Baryon spectroscopy (mandatory):

- Tools: hadro- and photo-induced reactions for studying baryon resonances
- Relevant degrees-of-freedom: $QCD \rightarrow quarks$ and gluons

Experiment \rightarrow hadrons (baryons and mesons)

- From experiment to QCD: reaction theory needed to extract the relevant quantities from experiment which can be connected directly to QCD and/or QCD-based models.
- Reaction Theory: dynamical coupled-channels (DCC) approaches:

(EBAC, JAW, DMT, Utrecht-Ohio, ...)

 \Box analyticity \rightarrow causality

 \Box unitarity \rightarrow channel couplings

 \Box gauge invariance (photo-induced reactions)

• •

JAW = Jülich-Athens/GA-Washington/DC

Hadron Spectroscopy: to help ultimately understand the confinement property of QCD

- Data Analysis (extraction of resonances):
 - If complete and accurate experimental data were available:
 - unique partial-wave amplitude A(W) as a function of energy W.
 - analytically continue A(W) to the complex energy-plane to extract the resonance poles and residues (transition form factors).
 - But, data are not complete and have error-bars:
 - reaction models for A(W) constrained by incomplete data with finite accuracy.
 - DCC approaches to A(W) (EBAC, JAW, DMT, ...): analytic unitary (coupled-channels: πN, ηN, KΛ, KΣ, ππN, σN, ρN, πΔ, ...) gauge invariant
 - Necessity of new generation of data for modern coupled-channels analyses:
 - photo-induced reactions: recent, high precision, some aiming for complete

experiments) (JLAB, MAMI, ELSA, Spring8, GRAAL, ...)

• hadro-induced reactions: scarce, low-precision, old (60'-80').

Channel opennings: hadro- & photo-induced reactions

one-meson productions:

 $\gamma N, \pi N \rightarrow \pi N, \eta N, K\Lambda, K\Sigma, \rho N, \omega N, \eta' N, \phi N \dots$ (two-body reactions) $KN \rightarrow KN, \dots$ $\bar{K}N \rightarrow K\Xi, KK\Omega \square$

two-meson productions:

 $\gamma N, \pi N \rightarrow \pi \pi N, \pi \eta N, \dots$ $\gamma N, \pi N \rightarrow KK\Xi, KKK\Omega \dots$ (three-body reactions)

meson production data in hadronic reactions: current situation

Baryons: resonance-energy region $[s^{1/2} < 3 \text{ GeV}]$

Overview of the data for pion-induced reactions < 3 GeV

ND		Reaction	Observables	Energy range	ND
230		$\pi^{^+}\!n \to K^{^+}\!\Lambda$	$d\sigma/d\Omega$	2143	5
154			Р	2143	1
115		$\pi p \to K^0 \Lambda$	σ	1631 ~ 2948	62
34			$d\sigma/d\Omega$	1631 ~ 2900	854
110			Р	1930 ~ 2900	724
90			β	$1852 \sim 2262$	72
16		$\pi^{^{+}}p \to K^{^{+}}\Sigma^{^{+}}$	σ	1729 ~ 2355	34
28			$d\sigma/d\Omega$	1821 ~ 2979	1041
12			Р	1731 ~ 2355	644
			β	2020 ~ 2106	7
	-	$\pi^{^+}\!n \to K^0 \Sigma^{^+}$	Р	2022 ~ 2323	12
31	_	$\pi^{}p \to K^{0}\Sigma^{0}$	σ	1985 ~ 2948	31
40	_		$d\sigma/d\Omega$	1694 ~ 2900	512
324	_		Р	1693 ~ 2883	124
33	_	$\pi p \to K^* \Sigma^-$	σ	1740 ~ 2948	16
41	-		$d\sigma/d\Omega$	1740 ~ 2900	193
17	_		Р	2733	10
20	1			L	

Reaction	Observables	Energy range	ND		
$\pip \to \eta n$	σ	$1486\sim 2280$	230		
	$d\sigma/d\Omega$	$1486 \sim 2410$	154		
	Р	$1740 \sim 2230$	115		
$\pi p \rightarrow \omega n$	σ	1720 ~ 2300	34		
	$d\sigma/d\Omega$	1730 ~ 2000	110		
	ρ,,,	1800 ~ 2300	90		
$\pi N {\rightarrow} \eta `N$	σ	1930 ~ 2450	16		
$\pi N \to \rho N$	σ	$1630 \sim 3000$	28		
$\pi N \to \phi N$	σ	1960 ~ 2350	12		

σ	$1228\sim 2646$	31
$d^2\sigma/d\Omega_{\star +}dT_{\star +}$	$1242 \sim 1301$	40
W	$1301 \sim 1168$	324
$d\sigma/dm_{ax}^2$	1256 ~ 1315	33
d o /dt	1256 ~ 1315	41
σ	$1228 \sim 2646$	17
σ	1236 ~ 1266	39
$d\sigma/d\Omega$	1269 ~ 1525	280
σ	1221 ~ 2574	26
$d\sigma/dm_{\pi\pi}^2$	1256 ~ 1315	37
d\sigma/dt	1256 ~ 1315	42
σ	1228 ~ 2867	19
	σ $d^2 σ/dΩ_{*+} dT_{*+}$ W $dσ/dm_{**}^2$ dσ/dt σ σ dσ/dΩ σ dσ/dΩ σ dσ/dΩ σ dσ/dΩ σ	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

 $\frac{\pi N \rightarrow \pi N \text{ (SAID PWA):}}{111 \text{ COL PUL PUL}}$

S11,S31,P11,P31, ..., H19,H39 (SES) [ND~1558]

Database for EBAC DCC model

(courtesy: H. Lee)

	Wa	aves #	of data V	Naves #	of data		$d\sigma/d\Omega$	P	R a	Sum
	$\pi N \to \pi N \text{ PWA}$	S_{11}	56×2	D_{13}	52×2	$\pi^- p \to \eta p$	294	-		294
		S_{31}	56×2	D_{15}	52×2					
Pion induced		P_{11}	56×2	D_{33}	50×2	$\pi^- p \to K^0 \Lambda$	544	262		806
<u>reactions</u>		P_{13}	52×2	D_{35}	31×2	$\pi^- p \to K^0 \Sigma^0$	215	70		285
<u>reactions</u>		P_{31}	52×2	F_{15}	39×2	$\pi^+ p \to K^+ \Sigma^+$	552	312		864
(purely strong)		P_{33}	56×2	F_{17}	23×2	Ĩ			_	
<u>reactions</u>				F_{35}	34×2	Sum	1605	644		2249
				F_{37}	35×2		2000	0.2.2		
	SAID)		Sum	1288					

~ 28,000 data points to fit

		$d\sigma/d\Omega$	Σ	T	P	G	H	E	F	$O_{x'}$	$O_{z'}$	$C_{x'}$	$C_{z'}$	$T_{x'}$	$T_{z'}$	$L_{x'}$	$L_{z'}$	sum
	$\gamma p \to \pi^0 p$	8290	1680	353	557	28	24	-	-	-	-	-	-	-	-	-	-	10860
	$\gamma p \to \pi^+ n$	5384	1014	661	221	75	123	-	-	-	-	-	-	-	-	-	-	7478
Photo-	$\gamma p \to \eta p$	1076	197	50	-	-	-	-	-	-	-	-	-	-	-	-	-	1323
<u>production</u> <u>reactions</u>	$\gamma p \to K^+ \Lambda$	611	118	69	410	-	-	-	-	66	66	89	89	-	-	-	-	1518
	$\gamma p \to K^+ \Sigma^0$	2949	116	-	320	-	-	-	-	-	-	52	52	-	-	-	-	3489
	Sum	18310	3043	1133	1508	103	147	-	-	66	66	141	141	-	-	-	-	24668

Overview of the data for pion-induced reactions < 3 GeV

ND		Reaction	Observables	Energy range	ND
230		$\pi^{^+}\!n \to K^{^+}\!\Lambda$	$d\sigma/d\Omega$	2143	5
154			Р	2143	1
115		$\pi p \to K^0 \Lambda$	σ	1631 ~ 2948	62
34			$d\sigma/d\Omega$	1631 ~ 2900	854
110			Р	1930 ~ 2900	724
90			β	$1852 \sim 2262$	72
16		$\pi^{^{+}}p \to K^{^{+}}\Sigma^{^{+}}$	σ	1729 ~ 2355	34
28			$d\sigma/d\Omega$	1821 ~ 2979	1041
12			Р	1731 ~ 2355	644
			β	2020 ~ 2106	7
	-	$\pi^{^+}\!n \to K^0 \Sigma^{^+}$	Р	2022 ~ 2323	12
31	_	$\pi^{}p \to K^{0}\Sigma^{0}$	σ	1985 ~ 2948	31
40	_		$d\sigma/d\Omega$	1694 ~ 2900	512
324	_		Р	1693 ~ 2883	124
33	_	$\pi p \to K^* \Sigma^-$	σ	1740 ~ 2948	16
41	-		$d\sigma/d\Omega$	1740 ~ 2900	193
17	_		Р	2733	10
20	1			L	

Reaction	Observables	Energy range	ND		
$\pip \to \eta n$	σ	$1486\sim 2280$	230		
	$d\sigma/d\Omega$	$1486 \sim 2410$	154		
	Р	$1740 \sim 2230$	115		
$\pi p \rightarrow \omega n$	σ	1720 ~ 2300	34		
	$d\sigma/d\Omega$	1730 ~ 2000	110		
	ρ,,,	1800 ~ 2300	90		
$\pi N {\rightarrow} \eta `N$	σ	1930 ~ 2450	16		
$\pi N \to \rho N$	σ	$1630 \sim 3000$	28		
$\pi N \to \phi N$	σ	1960 ~ 2350	12		

σ	$1228\sim 2646$	31
$d^2\sigma/d\Omega_{\star +}dT_{\star +}$	$1242 \sim 1301$	40
W	$1301 \sim 1168$	324
$d\sigma/dm_{ax}^2$	1256 ~ 1315	33
d o /dt	1256 ~ 1315	41
σ	$1228 \sim 2646$	17
σ	1236 ~ 1266	39
$d\sigma/d\Omega$	1269 ~ 1525	280
σ	1221 ~ 2574	26
$d\sigma/dm_{\pi\pi}^2$	1256 ~ 1315	37
d\sigma/dt	1256 ~ 1315	42
σ	1228 ~ 2867	19
	σ $d^2 σ/dΩ_{*+} dT_{*+}$ W $dσ/dm_{**}^2$ dσ/dt σ σ dσ/dΩ σ dσ/dΩ σ dσ/dΩ σ dσ/dΩ σ	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

 $\frac{\pi N \rightarrow \pi N \text{ (SAID PWA):}}{111 \text{ COL PUL PUL}}$

S11,S31,P11,P31, ..., H19,H39 (SES) [ND~1558]

$\pi N \rightarrow \pi N$: partial-wave amplitudes [W < 2.6 GeV] (SAID)

$\pi N \rightarrow \pi N$: partial-wave amplitudes [W < 2.6 GeV] (SAID)

$\pi N \rightarrow \pi N$: partial-wave amplitudes [W < 2.6 GeV] (SAID)

Existing data: $\pi p \rightarrow \eta n$, $\sigma [W < 2.3 \text{ GeV}]$

Clajus & Nefkens, πN Newsletter 7, 76 (1992)

Existing data: $\pi p \rightarrow \eta n$, $\sigma [W < 2.3 \text{ GeV}]$

Existing data: $\pi^{-}p \rightarrow \eta n$, $d\sigma/d\Omega$ [W < 2.4 GeV]

Curves: Jülich DCC model 2012

- Prakhov 05
- Bayadilov 08
- Morrison 00
- \triangle Kozlenko 03
- * Debenham 75
- ▲ Deinet 69 (***)
- □ Richards 70
- ♦ Feltesse 75

various inconsistent data

Detailed overview (selection & rating): Clajus & Nefkens, πN Newsletter 7, 76 (1992)

Existing data: $\pi^- p \rightarrow \eta n$, $d\sigma/d\Omega$ [W < 2.4 GeV]

- (***)
- (suggested to be eliminated from the data base)

various inconsistent data

Detailed overview (selection & rating): Clajus & Nefkens, πN Newsletter 7, 76 (1992)

Existing data: $\pi^- p \rightarrow \eta n$, hadro-vrs photo-reaction

Existing data: $\pi^- p \rightarrow \eta n$, polarization

[1.74 < W < 2.23 GeV]

Curves: Jülich DCC model 2012

Data: Baker et al., NPB156'79 (suggested to be eliminated from the data base)

some data points > 1

Detailed overview (selection & rating): Clajus & Nefkens, πN Newsletter 7, 76 (1992)

Existing data: $\pi^{-}p \rightarrow \omega n$, $\sigma_{[W<2.3]} \& d\sigma/d\Omega_{[W<2.6eV]}$

<u>Controversy?</u>:

Sibirtsev & Cassing, EPJA7'00 Titov et al., arXiv:nucl-th/0102032 Hanhart et al., arXiv:hep-ph/0107245 Penner & Mosel, arXiv:nucl-th/0111024

needs to be re-measured (HADES at GSI)

Existing data: $\pi^+n \rightarrow \omega p$, spin density matrices [1.8 < W < 2.3 GeV]

- large uncertainties
- no other observable exists

Existing data: $\pi N \rightarrow \eta \square N$, σ [W < 2.3 GeV]

 $\cos(\theta)$

Existing data: $\pi N \rightarrow \rho N, \phi N, \sigma$

Existing data: $\pi N \rightarrow KY$, σ

Selected data: $\pi N \rightarrow KY$, $d\sigma/d \Omega$

Selected data: $\pi^- p \rightarrow K^0 \Lambda$, polarization

• very large uncertainties for $\cos(\theta) < 0$

• several data points > 1

Selected data: $\pi^- p \rightarrow K^0 \Sigma^0$, polarization

- large uncertainties
- data sets not consistent at all points
- several data points > 1
- data for the K⁺Σ⁻ channel are limited (no polarization data below 2.7 GeV)

Existing data: $\pi^- p \rightarrow K^0 \Lambda$, $K^+ \Sigma^+$, spin rotation parameter

Selected data: $\pi N \rightarrow \pi \pi N$, $\sigma \& d\sigma/d\Omega$

some observables: sensitivity to model details

Jülich DCC model: D. Rönchen, M. Döring, F. Huang et al., 2012

Jülich Hadronic Model (TOPT):

$$T_{ij} = V_{ij} + \sum_{k} V_{ik} G_k T_{kj}$$

$$i, j, k = \pi N, \eta N, K\Lambda, K\Sigma, \sigma N, \rho N, \pi \Delta$$

effective $\pi\pi N$

W < 2 GeV

Data sensitivity: polarization & spin rotation coefficient

Data sensitivity: $\pi^- p \rightarrow K^+ \Sigma^+$, polarization

<u>Δ(1920) P33</u>:

most important resonance invisible in $\pi N \rightarrow \pi N$ but needed in $\pi^+ p \rightarrow K^+ \Sigma^+$

Data sensitivity: $\gamma p \rightarrow \eta \Box p$, beam asymmetry (Nakayama & Haberzettl, PRC73'06)

Model sensitivity: cross sections

3.0

Summary: database (hadr. react.): dismal situation

- Hadro-induced meson production reaction data are badly needed for modern coupled-channels analyses in baryon spectroscopy:
 - Existing data in the non-strange sector are very scarce, especially the spin observables (no double-polarization observable), and suffer from large uncertainty problem.
 - Many data are inconsistent with each other (e.g., $\pi N \rightarrow \eta N$) and/or of dubious reliability, requiring to be re-measured.
 - Better situation in the strangeness sector (KΛ, KΣ), although many of the polarization data require to be re-measured due to large uncertainties; only handful data points for double-polarization observable.
- The lack of data in hadronic reactions is one of the major limitations for developing more accurate coupled-channels models:
 - Some spin observables are quite sensitivity to the details of the model.
 - In $\pi N \rightarrow \pi \pi N$: difficulty to pin down N* $\rightarrow \sigma N$, ρN , $\pi \Delta \rightarrow \pi \pi N$

<u>HADES at GSI:</u> πN → ωN, ρN reactions (W< 2.4 GeV); no spin observables. <u>J-PARC:</u> πN → KY, ππN; $\overline{K}N → K\Xi$, KKΩ □

 $\gamma p \rightarrow \eta' p$:

Red: CBELSA/TAPS'09 Blue: CLAS'09

curves: Huang et al. '12

 $NN \rightarrow NN\eta'$:

