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m [ntroduction

m Experimental issues - review of hadronic data for TN,
NN, and KA channels

m Ambiguities in multichannel PWAs
m Other channels — K, wN, etc.
B Summary
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Introduction: Baryons as 3-Quark States

Table 14.5: Quark-model assignments for many of the known baryons in terms of a

flavor-spin SU(6) basis. Only the dominant representation is listed. Assignments for some
states, especially for the A(1810), A(2350), =(1820), and =(2030), are merely educated
guesses. For assignments of the charmed baryons, see the “Note on Charmed Baryons” in
the Particle Listings.

FE (D, L) § Octet members Singlets
1/2T (56,0f) 1/2 N(939) A(1116) $(1193) =(1318)
1/2T (56,05) 1/2 N(1440) A(1600) X(1660) =(?)
1/2= (70,17) 1/2 N(1535) A(1670) X(1620) =(?)  A(1405)
3/2~ (70,17) 1/2 N(1520) A(1690) X(1670) =(1820) A(1520)
1/2— (70,17) 3/2 N(1650) A(1800) X(1750) =(?)
3/2— (70,17) 3/2 N(1700) A(?) 2 =)
5/2~ (70,17) 3/2 N(1675) A(1830) X(1775) =(7)
1/2T (70,05) 1/2 N(1710) A(1810) X(1880) =(?)  A(?)
3/2T (56,2F) 1/2 N(1720) A(1890) X(?)  =(7)
5/2% (56,2F) 1/2 N(1680) A(1820) X(1915) =(2030)
7/2- (70,33) 1/2 N(2190) A(?) (7)) E(7)  A(2100)
9/2— (70,33) 3/2 N(2250) A(?) 2?7 =)
9/2t (56,4F) 1/2 N(2220) A(2350) X2(?7) =(7)
Decuplet members
3/2t (56,0f) 3/2 A(1232) 2(1385) =(1530) 2(1672)
1/2= (70,17) 1/2 A(1620) 2(?7)  =(?)  2(?)
3/2= (70,17) 1/2 A(1700) () =(7) (1)
5/2t (56,23) 3/2 A(1905) ()  E=(7)  (?)
7/2T (56,23) 3/2 A(1950) 2(2030) =(?)  £2(?)
1172+ (56,4F) 3/2 A(2420) (7)) =(7) ()




Introduction (cont'd)

m One goal of studying N* resonances is to
distinguish between different models.

m Important to learn about the different decay
modes of a resonance In addition to identifying
its basic properties (JF, mass, width).

m Certain experiments provide unique info about
resonance decay properties. For example, the
helicity couplings A, and Ag, for yp and yn
decays come only from meson photoproduction
measurements.
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Introduction (cont'd)

The helicity couplings in turn are normally extracted from
the full energy-dependent multipole amplitudes.

Until recently, the only available multipole amplitudes
were for single pion photoproduction. (The Bonn-
Gatchina group now has multipole solutions for np, K*A,
K*29, and K°Z*))

A determination of A,,, and A;,, from meson
photoproduction requires knowledge of the
corresponding hadronic couplings. (Photoproduction

alone determines only the product of couplings to the yN
and hadronic channels.)
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Experimental ISsues

m Most modern experimental efforts focus on
photoproduction or electroproduction experiments —
needed are high-precision complementary
measurements with hadron beams (pions and kaons)

m Partial-wave analyses are best way to determine N*
properties — Multichannel approaches can help resolve
Inconsistencies

= New measurements with polarized photon beams and
polarized targets should help reduce ambiguities In
competing PWA solutions

m An unresolved issue is that of the missing resonances
and hybrid baryons.

m A quick check of the PDG listings reveals that resonance
parameters of many established states are not well
determined.
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TTTTN Channels

m Most of the 3- and 4-star resonances in the PDG
listings were determined primarily from PWAs of
TTN—TTN data.

m Many of these states have large decay
branching ratios to TN channels.

m A complete analysis of yYN—T1TN ideally would
require fitting all data obtained with both pion
and photon beams.

m Unfortunately the lack of hadronic data (next
slide) makes such a task very difficult and leads
to ambiguous results for the pole positions.
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Avalilable Bubble-Chamber Data for TN—T1TTTN
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Our knowledge of 1A, pN, and
other quasi-two-body 1N
channels comes mainly from
iIsobar-model analyses of
TTN—TITTN.

Only 241K events available
below 2 GeV c.m. energy.

A new proposal to measure
these reactions with high
precision is being developed
for J-PARC.*

*Ken Hicks — private
communication
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Available data for T/ p—nn and 1 p—KO°A

TABLE I. Statistics for single-energy fits for 7= p — n n.

W(MeV) |do /dQ2|P| References

TABLE IL Statistics for single-energy fits for 7~p — K A.
1530 £15| 89 |-|[1, 10, 11, 13]

1560 + 15| 47 |-| [11, 12, 14] W(MeV) |do/dQ| P |Pdo/dQ| 3 |References
1590 £15| 43 [11-13] 1618+15 25 (5| 10 |-| [3.4
1620+ 15| 28 |-| [11,13] 1648+ 15| 30 (10 10 |[-| [3,4]
1650+ 15 15 |-| [11, 14] 1678+ 15| 170 (10| 80 || [3.4]
1680+ 15| 45 |-| [11,14] 1708 £15] 90 (10| 40 |-| [3,4]
1710+ 15 18 |- 14] 1738 +15 30 |14] 10 |-| [3,4]
1740+ 15| - |- 1768 £ 15| 10 (14| - = 4]
1770 £ 15| 19 (5| [2, 14] 1798 +15) 10 (14 - |-| [4
1800 + 15 _ 1828+15 10 (14 - || 4]
1830+15| 19 |5 [2,14] 1858 £15| 10 (14| - |11} [4,6]
1860+15 20 |7|  [214) 1888 +£15 20 (20 - [5]
1800415 20 |6| [2,14] 1918+15 33 (20 11 |-| [5 1]
1920415 20 |7| [2 14 1948 +15) 20 |20 9| [5,6]
oE6L T8~ |- 1978+ 15| 33 |20 11 |-| [5,15]
2008 +15| 19 |20 - || [5]

1980+ 15| 20 |[7] [2,14]
2038 +15| 33 (19| 11 |10 [5, 6,15
2010415 20 |7| [2, 14] [ ]

1| 5,6

2068 £ 15| 20 |18

2040 = 15 =

2070+ 15| 20 |7 12, 14]




do/d<2 (mb/sr)

do/dQ2 (mb/sr)

Typical do/dQ) data for TT'p—nn
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Typical Polarization data for T p—nn

3 3
Tp—nn p=1601 MeV/c Tp—nn p=1767 MeV/c
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Cross Section for T p—nn

| Prediction |
E Tp—>nn
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Properties of the S;,(1535) Resonance

m S5;,(1535) is unique in having - ] ' —
large decay branch to nN. 6 3L i i
| a -Hfh—++'|' -
_ 172 § T "
m A,,=0.060 + 0.015 GeV B |
from yp—=N. i 1
m A,,=0.120 +0.011 £ 0.015 v L 4 |
GeV-Y2from yp—np. : o

m Needs coupled-channel ) e

analysis to obtain consistent P, GeV/c

results.

Total cross section for tp—nn based on n—2y decay. The dashed
line indicates the n production threshold at p,=685 MeV/c.
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Spin-Rotation data for m p—K°A

wp— K°A, E, = 1843 to 1873 MeV
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Update on PWA for 1T p—KOA

m At PWA 2011 last May, | presented new KSU solution for
1T p—>KO/\.

m That solution did not include spin-rotation data ([3) in the
fit.

m The predicted values of tanf3 agreed well with data, but

values of 3 approached x1T at forward and backward
angles, rather than O as required.

m This necessitated the new fit whose results are shown In
this talk.

m Moral of story: ambiguities in PWAs can result without
different types of observables to constrain the solutions.
Thus, new measurements with hadronic beams are
needed.

15
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Cross Section for T p—KOA

| Prediction
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Status of the Bonn-Gatchina partial-wave analysis

Talk by Andrei Sarantsev - PWA 2011

see also A. V. Anisovich et al., Eur. Phys. J. A 47, 153 (2011)

P;1: pole position and Breit-Wigner parameters

State Solution 1 Solution 2 Manley
N(1875)1"  Re  1860+20 1850129 1885+30
x 2m 110730 360440 113444
BW M 1864+10 1863120
parameters r 115420 320130
BG2011-01 BG2011-02
0.4 0.4
D @
®0.3 0.3}
0.2 0.2
0.1 ‘ { 0.1 , :
of oF
0.1 0.1 :
02927476 18 2 22 V29274 16 18 2 22
- -
Eo06 Eos6
0.4 0.4f ¢
0.2} 0.2}
oF o
12 14 16 18 2 22 712 14 16 18 2 22
M(nN), GeV M(rN), GeV
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Status of the Bonn-Gatchina partial-wave analysis

talk by Andrei Sarantsev -
see A. V. Anisovich et al., Eur. Phys. J. A 47, 153 (2011)

Pole position of [}5: two and three pole solution

PWA 2011

State Solution 1 Solution 2 Arndt Hoehler Cutcosky
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ok -2Ilm 100 — 300 100 — 300 109 95420 -
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-2lm 5604100 5404100 — — -
— -
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0.2} 0.2}
of of
= ,_h-w;f 3¢
-0.2 s -0.2} ; e i
0.4 1.6 1.8 2 22 24 04l 1.6 1.8 2 25 B
- -
E E
0.6} 0.6}
0.4f 0.4}
0.2} . T 0.2} iy
0‘ 0__
1.4 1.6 1.8 2 52 24 1.6 1.8 2 22 2.4
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Status of the Bonn-Gatchina partial-wave analysis PWA 2011

A. V. Anisovich et al., Eur. Phys. J. A 47, 153 (2011)

The vp — K A reaction (CLAS 2009)

Opor MD : Opopr Hb
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Other channels

m Other decay channels are also of interest. For example,
a number of new experiments are looking at
photoproduction of KX channels that, unlike NN and KA,
Involve a mixture of isospin 1/2 and 3/2 amplitudes. Past
PWAs of TN—K2Z have been plagued by ambiguous
solutions, which will make a clear interpretation of K2
photoproduction data difficult.

m [sospin-selective channels such as wN are important for
an understanding of N* resonances, but no reliable PWA
of TN—wN has been done due to inadequate data and
to the large number of amplitudes needed to describe
vector-meson production.
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Other channels (cont’'d)

m The decays of A* resonances into pure 1=3/2 nA and
wA channels are almost completely unexplored Such
channels offerthe potential to reveal "missing
resonances’.

m One can study nA decays using yp—T" 1T p to select on
yp—1 A" and yp—T*AC.

m A complementary measurement would be m p—1°nn or
T p—TNP.

m Virtually nothing is known about resonances that decay
Into N'N or n'A and these should also be studied using
both electromagnetic and hadronic probes.

21
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Summary

m Many new data are becoming available from JLab,
Mainz, Bonn, Graal, BES, etc.

m Spin observables will help constrain PWAs.

m High-precision hadronic data are needed to help
Interpret the data from electromagnetic facilities.

m Multichannel PWASs are needed to obtain consistent
results.

m Ambiguous and imprecise partial-wave amplitudes and
resonance parameters will result unless hadronic data
with similar precision to modern electromagnetic data
are measured.

22
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