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Why neutrons?

= High demand from nuclear industry for good quality
data, first of all neutron-induced reaction cross
sections for actinides and sub-actinides

Development of new advanced nuclear reactors

Decreasing nuclear data uncertainties will decrease
nuclear reactor construction safety margins incorporated
into reactor’s design

Industry keeps developing: in Dec. 2011 NRC approved
first nuclear power plant license since 1978 for the power
plant expansion in Georgia

Public pressure is as high as ever
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Why neutrons (cntd)?

s Defense physics needs

= Accelerator-based conversion of weapon’s grade
plutonium

= Transmutation of nuclear waste, especially actinides

Yucca Mountain nuclear waste repository doesn’t accept
new waste effective in 2011

s Basic understanding of fission process, fundamental
physics, etc.
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Why a pulsed neutron source?

s The most accurate and effective method to measure
neutron energy is the time-of-flight method
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What is the energy range of interest?

Fission Cross Section and Fluxes

= Neutron flux shapes
folded with cross

_ rast Reactor sections determine
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History of neutron source development
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Spallation sources: n/p yield and neutron energies
(thick Pb target)
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Moderated neutron sources

= Enrich neutron flux with
epithermal neutrons

- High content hydrogen material
is used for effective neutron
moderation, e.g. polyethylene,
water, etc.

- Varying of moderator thickness
one can change the ratio of
faster/slower neutrons

Neutron flux of moderated source, LANSCE
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Time resolution of moderated source, GNEIS
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=7
= Very specific moderator — liquid & |
hydrogen — provides cold and 2
ultra cold neutrons. This is a very ger====——
unique field of neutron physics 2 R
. Details about this field are in the following report of S.Dewey & o NeuTRon ENEROY (V)" “ °
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What facilities are available for fast neutrons?

WNR GNEIS n_TOF SNS J-PARC

Proton energy, MeV 800 1,000 20,000 1,000 3,000
Proton current, yA 1.8 2.3 0.5 1,400 300
Target W Pb Pb Hg Hg

Number of produced

neutrons per proton

Total neutron yield
per second

Proton pulse length
on target, ns

Pulse frequency, Hz 13,900 50 0.4 60 25

10 20 250 25 75
1-1014 3104 8104 2-10"7 1.5-10"

0.2 10 6 700 1,000

Handbook of Nuclear Engineering, Springer, 2010
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Existing 23°U(n,f) XS data for fast neutrons
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Existing 22°Pu(n,f) XS data for fast neutrons
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Ref.:
LANL(88): Lisowski et al., ND-1988(1988)97
/'\ LANL(98): Staples et al., Nucl.Sci.Eng. 129(1998)149
PNPI(02): Shcherbakov et al., J.Nucl.Sci.Tech. S2(2002)230

LANL(10): Tovesson et al., Nucl.Sci.Eng. 165(2010)224
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Existing 238U(n,f) XS data for fast neutrons

Fission cross section, b
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- Los Alamos UNCLASSIFIED Siide 12
Operated b); Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA /N l.‘Dg&f}

1N A ~4



Existing data for fast neutron-induced fission of some
minor actinides
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Systematic errors associated with conventional FICs

1. Separation of fission and background events in pulse-
height spectra:

Spallation and fragmentation inputs
Radioactivity of used targets
Electronic noise

2. Anisotropy of emitted fission fragments

3. Neutron flux normalization: mostly data were obtained from
235U ratio, very few were normalized to (n,p)-scattering

4. Beam profile and sample uniformity

5. Charged particle contamination of neutron beam

6.
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TPC can address most of the systematic uncertainties
associated with conventional FICs

= Time Projection Chamber (TPC)
technology based on highly pixelated
readout anodes

Charge

Segmented Plate Deposited

= . Fission Alpha
= Full 3D event reconstruction gives a fragment  partt
“snapshot” of ionization tracks in O y
a fill gas
= Particle identification based on specific Fission Alpha |

68 2 .
fragment 2 particle |**
a2 ¥ 004

ionization loss

= The TPC experiment, involving a
collaboration of 4 national labs and 6
universities, is currently running at the
fast neutron beam facility WNR at LANL

C’) Al There are more details in following report of F.Tovesson
. m -
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Other ways to avoid systematic uncertainties associated
with conventional FICs

1000

= An ionization fission chamber with gaseous o
. o= y . . Red — Fission Fragments
actinide target doesn’t lose fission fragments .,/ Geen - aphassscaters

emitted at steep angles wof |  Black—Sum

= Uranium hexafluoride UF4 can be a suitable ™.
compound for investigating U isotopes as it - )( :
has a boiling point at 56.5°C TR TR e e

Track Energy (MeV)

- There is no “edge-effect” due to two fragment emission

- It is expected much better resolution between fission
fragments and small PH signals in a pulse height
spectrum

Neutron

- Separate active volume outside the main one should be beam
used for the background neutron input estimation

Ref.: Laptev, Strakovsky, Briscoe, Afanasev,
Proposal NSF-ARI-MA (DNDO) Grant ECCS-1139985, 2011

x For the Pu isotopes, plutonium hexacarbonyl
A Pu(CO), can be considered.

fj Ref.: Thanks to W.Loveland, Oregon State University,
for pointing out this opportunity
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NATIONAL LABORATORY UNCLASSIFIED Slide 16
EST.1943
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA /i N . ‘

I NI A D—”"



Prompt Fission Neutron Study

= Existing data establish the prompt fission
neutron spectrum quite well in the energy
range from 1 to about 5 MeV

08 [

Knitter, 1975 (0.215 MeV) »—=—
06 1 Stay pl , 1995 (0.5 MeV) +—=—
La |t i, 1985 (thermal) —&a
Bojcov, 1983 (thermal] -

m The Chi-Nu experiment to study the prompt i S
fission neutron spectrum will also run at the WNR ..

0.01 0.1 1 10
QOutgoing Neutron Energy (MeV)

to Maxwellian (T=1.42 MeV)

Ratio

Parallel plate avalanche counter as a fission trigger

N\

. ~35 % less | Important

20 Li-glass detectors to measure neutron output below than 1 MeV region for
1 M V rad-chem:
e (n,2n) etc.

50 liquid scintillator detectors to measure neutron
output from 0.5 to 12 MeV

s  Chi-Nu goals are

Below 1 MeV, to reduce the neutron output uncertainties
from ~10% to ~5%

Above 6 MeV, to reduce uncertainties from 20-50% to

(V)
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Angular distribution of PFN relative to FF

Recent measurement for thermal neutrons

w
o

1 = Fission neutrons from the 23°U(n,,,f) reaction
neutron detector ND1 - were detected at several angles

& neutron detector ND2 . .
Angular resolution is 18°

s Model calculation was done on the basis of
the assumption that neutrons are emitted
only from fully accelerated fragments

s Obtained an estimate of upper limit for
“scission” neutrons less than 5% of the total
neutron output
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Bl Starsvag (1969) { = From all existing works: the contribution of
126 38 = B 75 W0 T8 158 4E 165 185 scission neutrons to the total yield of PFN
0 [degree] ranges from 1% to 20%, so even existence
of “scission” neutrons can hardly be
considered proven
Ref.: AVorobyev et al., NIM A 598 (2009) 795
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Fission fragment yield distribution

x The fission fragment yield distribution changes drastically with
neutron energy above ~10 MeV, from asymmetric to symmetric

= There are no data above neutron energy of about 20 MeV
except for 233U and 232Th. No data for the most important nuclei
235 and #°Pu !

= These data are vitally important for both fission theory and
many applications including fast reactors, ADS systems, and
special nuclear devices

= This gives strong motivation for the new LANL experiment
SPIDER, designed to obtain fission fragment yields with mass
resolution up to 1 amu following fast neutron-induced fission

f%
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Existing data for fission fragment yield distribution as a
function of neutron energy for 232Th

6 _ﬁ ............ ......... § ,,,,,,,,,,,, ..... FF mass reSOIUtion is ~ 8 amu
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£ d bt et e
2 _i ...... i ................. I SR T
= e R S A [%2Th, E,= 25 MeV | _ , ‘
2 _I ,,,,,,,,,,, g !11 ..... =T N S .....
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0 i i L S|
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|

x The fission fragment yield distribution
experiences drastic change in the T Messamay
energy range from 10 to 60 MeV
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High resolution fission fragment yield measurements

m Measured at ||_|_, 229Th(nt,,,f) with COSI-FAN-TUTTE sp_c_actrometer

4000 =EESSRESNEES == ] g0r— —

France for - FF yield | ; A Nuclear charge
thermal neutron A

| 1
! I n(\ F|II|| :'i ‘
| ”““ll“' J|I1rl ‘

DL.iI"ITS

FF mass resolution o LJ' | il
is ~ 0.64 amu uzdﬂw J\zu L

Ilghi fraqmcnt mass [amu

R =4 — i
Channels (arb.units)
Ref.: Boucheneb et al., Nuc.Phys.A 502(1989)261c

= SPIDER experiment to measure energy-dependent neutron-
induced FF ylelds with high resolution in progress at LANL

Ref.: White, Tovesson et al.,
Report LA-UR-11-01125

FF mass resolution
iIs expected ~1 amu

» Los Alamos There are more details about SPIDER in following report of F.Tovesson
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Yield, %

Correlation between PFN multiplicity & FF properties

Search for correlation between PFN multiplicity & FF properties
in SF of 2°2Cf, 244Cm, and ?3Cm was done using a 41 neutron
detector and twin Frisch gridded FIC

12 r 1 . I - I ¥ | 1 | = i ¥ I

m  Fission fragment mass distribution for fixed
numbers of emitted neutrons v, /v,, for
spontaneous fission of 248Cm

m There are no such data for fast neutron-
induced fission. The very first attempt of
such measurement was done for thermal
and 0.3 eV neutron induced fission of 23°U
and 23°Pu [Batenkov et al., AIP Conf. Proc. 769

(2005)1003]
- . . . 5 : . . . m Fission theories are most sensitive for
® % 10 10 320 10 MO 180 100 correlated data, source: LANL-LLNL fission
NS, AL workshop, Feb 3-6, 2009

Ref.: V.Kalinin et al., Fission: Pont d'Oye V (2003)73

/" FF mass resolution is ~ 3.5 amu (FWHM for 2°2Cf)
» Los Alamos
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Average fission neutron multiplicity

= Average fission neutron multiplicity as a function of incident neutron energy
is known quite well for nuclei 23°U, 238U, and 23’Np, up to 200 MeV

YT L e e L B s ms s moe ey

-, I
12 + 35U % 12 F 238U 3 - Ref. (255U);

o) ] R.Howe,
o Nucl.Sci.Eng. 86(1984)157
T.Ethvignot et al.,
5 | PRL 94(2005)052701
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Average Neutron Multiplicity
(o))
<y
0+
Average Neutron Multiplicity
»

Ref. (238U):
4 . J.Frehaut ,
EXFOR data 21685.003
[ ] Frehaut(1980) 1 J.Taieb et al.,

2L O Taieb+(2007) - ND-2007 (2007)429

N

0 s | s | s | s | " | " | " | " | " | " 0 1 | 1 | 1 | 1 | 1 | 1 | 1 | L | L | L
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Incident Neutron Energy, MeV Incident Neutron Energy, MeV

s For other nuclei important to the nuclear cycle the data are limited:
for 232Th < 50 MeV, 239Pu < 30 MeV, 233U < 15 MeV, 243241Am < 11 MeV, etc.

70
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Total kinetic energy of fission fragments as a function

of neutron energy

s Data on total kinetic energy of fission fragment are required for both theory
and applications to calculate total energy release in fission (along with that for
e prompt and delay fission neutron, prompt
> ol 238 | and delay fission gamma-ray energy, etc.)
= Pre prompt neutron emission
> | '
o 170 @:pg = .
5 Ref..
© Data: C.Zdller, PhD Theses (1991)
T 1691 . F. Vivés et al., NP A 662(2000)63
2 Fit: D.Madland, NP A 772(2006)113
2 168 [ o zoller (1991) ]
= o Vivés et al. (2000)
Fit
o T s o s 3 ® Thereis noticeable disagreement
Incident Neutron Energy, MeV among existing data below 5 MeV
= The quadratic fit (to Zoller data) doesn’t describe structure near different
chance fission thresholds because the corresponding experimental data for
235U and 23%Pu are much lower in quality and the energy range is limited
[% (there are no data above 15 MeV)
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Angular anisotropy of fission fragments

140 T T T T v T T T T T T T 2.0 — T T T T LA A L |
238U 4 I 238U
120 } E =14.1MeV - 1'8_‘ ]
08 16} ¢ %_.i o -
% 100 . T | v 3
S o i ]
£ S14f ¢ 2 4 ¢ _
S 80 1 SR ‘s
b S 12}t g e -
o e Ouichaoui+(1988) g ¢ :
. 2 r
60 Fita +a,cos’6,, . :g 10k e Ouichaoui+(1988)
® Shpak(1989)
Other data(<1981)
40 1 1 1 " " 1 " " 1 " " 1 08 M| I I I " 1 PR | 1 ]
-30 0 30 60 90 1 10
@Lab’ deg En, MeV
m |tis used in fission cross section measurements to Ref:
calculate a correction for FF absorption in a target Shpak, Yaderaya Fiaka 500989022
= Provide information about the projection of the total
angular momentum J of the fissioning nucleus along
[\7 the nuclear symmetry axis at saddle point deformation
’ !:93&'3!!3%? UNCLASSIFIED Side 25
OperatedE;;WE;; Alamos National Security, LLC for the U.S. Department of Energy’s NNSA /N l.‘Dg&ﬁ

1N A ~4



Ternary fission yields

= Important for both fission theory and applications (gas emission

characteristics)

s Studied quite well at thermal
energy:
235U ratio binary/ternary

fission was measured quite
well: 536%10

[c.Wagemans et al., PR C 33(1986)943] ;

N(E)

energy distribution of ternary
a’s measured
[c. Wagemans et al., NP A 742(2004)291];

etc.

E-distribution for the 23°U(n,,,f) ternary a’s

L~ Wagemans+ (2004)
235U *  Caitucoli (1980)
—— 2 Components fit
I L
0 5 10 15 20 25 30 35

Energy (MeV)

= Confident separation of all ternary particles in SF 2°2Cf

[M.Mutterer etal., PRC 78(2008)064616]
» Los Alamos
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Prospective investigations of ternary fission

= Very little data for fast neutron-induced fission. Better
understanding needed of:

Variation of ternary-to-binary fission ratios in the resonance energy
region. E.g., a correlation of ternary fission yields and the relative
contribution of standards | and Il fission modes was found in
235U(n,f) resonances at energy from thermal to 2500 eV

[S.Pomme etal., NP A 587(1995) 1]

Angular anisotropy in ternary nuclear fission and its dependence
on neutron energy. Most fission theories predict ternary particles to
be formed at scission. A way to confirm this assumption is to
analyze the angular distribution of fission fragments

[s.Dilger, PhD Theses(2004)]

“Quaternary” fission with an apparently independent emission of
two charged particles?
ya [M.Mutterer, Pont d'Oye V(2003)135]

—
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Subthreshold fission as a search for class-ll states

m  Gives unique information about fission barriers

m Direct demonstration of double-humped
structure of potential energy of heavy nuclei
and existence of class-Il states

m  First systematic study of class-Il clusters with
high energy resolution was done at the ORELA
facility, ORNL for 24°Pu

1936 eV cluster in subthreshold
fission of 240Py

T T T

Fission Cross Secinn(b)_
n

Potential Energy (MeV)

The double-humped Clustering of

fission barrier fission strengths
T T T T T T T N I N 1 M T E
:TBZCV 1405 eV 1935€V:
1000 |- | -
{1 100} .
> C 3
[
1 £
£ 10}
Isomeric ES
Fission 5
—_—a ® 1}
@
ic
Spontanoaus-
- 01 |-
. , Fission E ] )
02 04 06 08 10 12 14 1000 1500 2000

Neutron Ene eV
Deformation p oy (eV)

Ref.: Mughabghab, Atlas of Neutron Resonances, 2006

= Clustering of subthreshold fission strengths observed in 24°Pu
LMJ ﬁ was explained in terms of the double-humped fission theory
O~ 7 77— a  Average level spacing of class-Il states estimated of
I700 1900 2100 2300 D, = 45050 eV. Based on that and known D,, a value of
AN Neutron Energy (eV) E, = 1.52+.08 MeV was derived
Ref.: Auchampaugh, Weston,
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Search for y-transitions to class-Il states

m Differences in pulse-height y-ray spectra for
Descriptive schematic of the weak (I'; < 10 meV) and strong ([; > 10 meV)

. . fission 1*-resonances of 23°Pu in epithermal
(n, yf) reaction mechanism neutron energies

 Energie d excilation m Few possible structures could be interpreted

+ e as a y-transitions between class-Il states
. AN fecinn O : . "
Sn !efo{m|"cf1 vers la fizsion 210 s Confident discovery of class-Il y-transitions
transitions E 1 yers lo Fission will give unique information about the
Sn-Eyl -5 — structure of the fission barrier
o —2"
élat vibraltionnel %
vers la N Cc 0,08
— 9 0
Fission ;*-;
¢ L wn
cOplure 5 “ 0 006
ém ® 5 ;
2——gpulls e g
barriére 1 ..} ‘:j £ 0,04
el w¥ e & $
deformation o © =
0,02
Ref.: J.Trochon, Physics & Chemistry of Fission, 1979, Vol. |, p.87
a *’
) ) ’ ne Pulse hetghfff 50
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Proton-induced fission of 23°U

. . . 235
Fission cross section of U
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This energy range is important
for future ADC systems, e.g.,
for transmutation of nuclear
waste

Existing data are very scarce
and are in contradictory

The ALICE code calculation for
the JENDL-HE data file shows
a peak near 300 MeV, which
comes from a broad reaction
cross section shape from the
optical model [Private communication
from T.Kawano, 2009]. New
experimental data are needed
to confirm that result

Relevant proton energy range
should be available for the
JLab EIC booster
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Single-event effects (SEEs) in electronics investigations

= Increasing complexity and density of an electronic
chips increases their susceptibility to cosmic
radiation. Most SEEs in avionic electronics at aircraft
cruising altitudes are caused by neutrons

s Electronics industry is very interested in checking the
stability of their electronics against neutron irradiation

= Spallation neutron sources can imitate cosmic
neutron flux but with intensities millions of times
higher

= Many facilities all around the world built irradiation
A facilities, which are in high demand
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Active facilities in SEEs studies

Facility Affiliation Ehr;lir\% ’ Neutron source Ref.
ICE House LANL, USA 800(p)  White spectrum ~ *KOenEeS0e 99
IEEE Radiation Effect:
TR'UI'X'aFci'l\i't?“trO” TRIUMF, Canada  70-500(p)  White spectrum  Data wir'kjsfg&, 2003,
p.

The Svedberg Lab., IEEE Radiation Effects

ANITA Uppsala Univ., 180(p) White spectrum Data Workshop, 2009,
Sweden p-166

VESUVIO Rutherford Appleton

; Appl. Phys. Lett. 92,
Laboratory, UK 800(p) White spectrum pI;)1410y1s(2g(t>t8)
GNEIS PNPI, Russia 1,000(p)  White spectrum "t 2007 Kooh 93
Research Center for Quasi- 42nd Annual IEEE Int.
RCNP Nuclear Physics, 14-198(n) monoenergetic &Rl Physics Symp,
Osaka Univ., Japan 9 2004, p-305

? (p) indicates proton beam energy on spallation target;
(n) energy of neutron beam is shown.

= With the EIC booster proton energy of 3,000 MeV
it may be possible to obtain better imitation of
A cosmic-ray neutron spectrum to higher energies

— )
» Los Alamos
NATIONAL LABORATORY UNCLASSIFIED
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Neutron flux (nfem2/s)
=

Neutron flux of the ICE House
irradiation facility at LANL

The ICE House neutron flux

Cosmic-ray neutron flux
(multiplied by 108)

Integrated neutron flux above 1 MeV ~108n/cm?/s

100 L !
100 101 102 103
Neutron energy (MeV)

Neutron flux of the irradiation
facility at GNEIS

Neutron flux, n/(cm?s MeV)

T 102 ‘ 10

Neutron energy, MeV
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Summary

= In many years of fission research, a large volume of
experimental data was accumulated

= There is still a significant lack of fission data for fast
neutrons. Improving the quality of existing data will
make a crucial impact on important applications and
nuclear theory

= The proposed EIC complex at JLab promises to be a
facility for acquiring hlgh-quallty experimental fission
data and to carry out applied research
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