Amplitude analysis of $\gamma N \rightarrow K \pi \Lambda \& K p \rightarrow \pi \Lambda$

Bing-Song Zou Institute of High Energy Physics, CAS, Beijing Theoretical Physics Center for Science Facilities, CAS

Puze Gao, J. J. Wu, B. S. Zou, PRC81(2010) 055203 Puze Gao, B. S. Zou, A. Sibirtsev, arXiv:1011.2387 [nucl-th]

Outline:

- Motivation
- Analysis of $\gamma N \rightarrow K \pi \Lambda$
- Analysis of $Kp \rightarrow \pi \Lambda$
- Summary

1. Motivation

Distinguishable model predictions for Σ^* of $1/2^-$ SU(3) octet					
	Quenched	&	unquenched quark models		
L=1	qqq excitation		L=0 qqqqq excitation		
udq	~ N*(1535)		udus s ~ N*(1535)		
uds	Λ*(1670), Σ*(~1630)	udsq \bar{q} $\Lambda^{*}(1405), \Sigma^{*}(\sim 1380)$		

Σ^* in PDG

****	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Sigma^*(1670)3/2^-$ $\Sigma^*(2030)7/2^+$
***	$\Sigma^*(1660)1/2^+$ $\Sigma^*(1750)1/2^ \Sigma^*(2250)??$	Σ*(1940)3/2 ⁻
**	$\Sigma^{*}(1620)1/2^{-}$ $\Sigma^{*}(1690)??$ $\Sigma^{*}(2080)3/2^{+}$ $\Sigma^{*}(2455)??$ $\Sigma^{*}(2455)??$	E*(1880)1/2+ *(2620)??
*	$\begin{array}{llllllllllllllllllllllllllllllllllll$	*(1580)3/2 ⁻ ;*(2000)3/2 ⁻ *(3000)??

All from old experiments of 1970-1985 !!

No $\Sigma^*(1/2^-)$ around 1380 MeV ?

Re-analysis of old data on K⁻ p \rightarrow $\Lambda \pi^+ \pi^-$ Wu, Dulat, Zou, PRD80 (2009) 017503; PRC81 (2010) 045210

→ Possibly hidden $\Sigma^*(1/2^-)$ under $\Sigma^*(1385)3/2^+$ peak

New generation experiments on Σ^* at CLAS, LEPS, CB

CLAS 2005:
$$\gamma + p \to K^{+} + \Sigma^{*0}$$
 Ey=1.5-4 GeV
LEPS 2009: $\vec{\gamma} + n \to K^{+} + \Sigma^{*-}$ Ey=1.5-2.4 GeV
 $\downarrow \Lambda + \pi$
CB 2009: $K^{-} + p \to \pi^{0} + \Lambda$ Pk=514-750 MeV

Anything new on Σ^* ?

2. Analysis of $\gamma N \rightarrow K \pi \Lambda$

First studied with Effective Lagrangian approach by Oh, Ko, Nakayama, **PRC**77,045204(2008)

Feynman diagrams for $\gamma N \rightarrow K\Sigma^*(3/2^+)$

•Form factors and contact current:

$$F_M = \frac{\Lambda_M^2 - m_K^2}{\Lambda_M^2 - q_t^2},$$

Other channels

t-channel K exc.

$$F_B(q_{\rm ex}^2, M_{\rm ex}) = \left[\frac{n\Lambda_B^4}{n\Lambda_B^4 + (q_{\rm ex}^2 - M_{\rm ex}^2)^2}\right]^n$$

The contact current for $\gamma p \rightarrow K^+ \Sigma^{*0}$ is

•Haberzettl et. al, **PRC**74,045202(2006) $M_c^{\mu\nu} = ie \frac{f_{KN\Sigma^*}}{m_K} (g^{\mu\nu} f_t - q^{\mu} C^{\nu}),$ where $C^{\nu} = -(2q - k)^{\nu} \frac{f_t - 1}{t - m_K^2} [1 - h(1 - f_s)]$ $-(2p + k)^{\nu} \frac{f_s - 1}{s - M_N^2} [1 - h(1 - f_t)]$ The contact current for $\gamma n \rightarrow K^+ \Sigma^{*-}$ is

$$M_c^{\mu\nu} = ie\sqrt{2}\frac{f_{KN\Sigma^*}}{m_K}(g^{\mu\nu}f_t - q^{\mu}C^{\nu}),$$

where

$$f^{\nu} = -(2q-k)^{\nu} \frac{f_t - 1}{t - m_K^2} [1 - h(1 - f_u)] + (2p' - k)^{\nu} \frac{f_u - 1}{u - M_{\Sigma^*}^2} [1 - h(1 - f_t)]$$

where

$$f_t = F_M^2$$
 and $f_s = F_B^2(s, M_N)$
 $f_u = F_B^2(u, M_{\Sigma}^*)$

h is a free parameter to fit experiments.

Prediction vs data

- Total cross section $\gamma p \rightarrow K^+ \Sigma^{*0}$ of CLAS well described.
- differential cross section $\vec{\gamma}n \to K^+ \Sigma^{*-}$ of LEPS data also be described, but not for the Beam asymmetry A_{beam} .

Two possible solutions for the problem:

ds/dcos $\theta_{c.m.}$ for $\gamma n \rightarrow K\Sigma^*$ compared with LEPS data

Integrated cross section for $\gamma n \rightarrow K\Sigma^*$ vs. LEPS data

different predictions for the two schemes.

Scheme I describes both with same parameters, Scheme II shoud use different h . $\widehat{\underline{\mathfrak{A}}}$

Integrated cross section for $\gamma p \rightarrow K\Sigma^*$ vs. CLAS data

3. Analysis of Kp $\rightarrow \pi \Lambda$

The high precision new data can give valuable information for Σ^* resonances.

With these basic ingredients of 14 tunable parameters , the best fit gives $\chi^2 = 763$ for the 248 data points, including

Differential cross sections:
$$\frac{d\sigma_{\pi^{0}\Lambda}}{d\Omega} = \frac{d\sigma_{\pi^{0}\Lambda}}{2\pi d\cos\theta} = \frac{1}{64\pi^{2}s} \frac{|\mathbf{q}|}{|\mathbf{k}|} |\bar{\mathcal{M}}|^{2}$$
$$\Lambda \text{ Polarization :} \qquad P_{\Lambda} = \frac{3}{\alpha_{\Lambda}} \Big(\int \cos\theta' \frac{d\sigma_{K^{-}p \to \pi^{0}\Lambda \to \pi^{0}\pi N}}{d\Omega d\Omega'} d\Omega' \Big) \Big/ \frac{d\sigma_{\pi^{0}\Lambda}}{d\Omega}$$

Adding *** $\Sigma(1660)1/2^+$, $\chi^2 = 223$ for 248 data points with 18 tunable parameters.

$$K^- + p \rightarrow \pi^0 + \Lambda$$
 $\sqrt{s} = 1569 - 1676 \text{ MeV}$

Replacing $\Sigma(1635) 1/2^+$ by a $\Sigma(1/2^-)$, χ^2 increases by more than 160 with mass goes down to be below 1400 MeV.

 $\Sigma(1380)1/2^{-}$ is not needed, but cannot be excluded.

CB A Polarization data is crucial for discriminating $\Sigma^*(1620)1/2^-$ from $\Sigma(1635) 1/2^+$.

Summary

With the analysis of three reactions:

 $\gamma n \rightarrow K \Sigma^*$

K p→ ππΛ

The evidence of $\Sigma^*(1/2)$ predicted by the pentaquark models.

К р→πΛ

Existence of Σ(1660)1/2 +(***), with mass near 1635MeV, width 121MeV.

Need More experiment data to confirm them!!