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WHAT IS IT ALL ABOUT?

We want to match theory and experiment

The matching point has to be uniquely defined, physical, and 
measurable

In excited nucleon physics, we match resonance parameters
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RESONANCE PARAMETERS
DEFINITIONS
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RESONANCE PARAMETERS
WHERE DID THE CURVE COME FROM?

!! !
!

!
!

!

!
!
!
!

!
!
!
!!

!
!

" "
"
"

"
""

"

"

"
"
" "" "" " "

1100 1150 1200 1250 1300 1350 1400

!0.5

0.0

0.5

1.0

W !MeV

Τ
!a.u.

Im Τ

mBWmP

Re Τ

#"1232#
PDG

PDGN∗ convention (W =
√
s)

τ(W ) =
|rP | eiθP

mP −W − iΓP /2
+ τb(W )

PDG

mP = 1210MeV

ΓP = 100MeV

|rP | = 50MeV

θP = −47◦

4

Unitarity

Im τ(W ) = τ(W )† τ(W )

|rP | = ΓP /2

τb(W ) = eiθP /2 sin θP /2
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RESONANCE PARAMETERS
S-MATRIX POLES ARE (UN)MEASURABLE?

6 41. Plots of cross sections and related quantities

σ and R in e+e− Collisions
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Figure 41.6: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.) See full-color
version on color pages at end of book.
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RESONANCE PARAMETERS
S-MATRIX POLES ARE (UN)MEASURABLE?
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whole chosen range. Such procedure allowed different
background term for each fit, which is much closer to re-
ality than assuming a single constant background term
for the whole chosen data set (see e.g. discussion on the
problems with speed plot in Ref. [9]). In the end, we
imposed a series of statistical constraints to all fits to
distinguish the good ones.
In order to pinpoint the statistical strategy to be used,

we did a substantial number of simulations with the data
sets that had known poles and zeros. It turned out that
the most successful strategy was to make an ordered list
of all fit results, from best to worst, and then to drop
the worst three quarters using the following goodness-of-
fit measures: Akaike information criterion [11], Schwartz
(Bayesian information) criterion [12], and P-values of
the extracted fit parameters (in particular, Mp and Γp).
Eventually, we kept the intersection of the fits that sat-
isfied all criteria. Results closest to the original poles
were produced by averaging the obtained pole positions
of all good fits. The standard deviation turned out to be
a good estimate for errors of obtained parameters. All
other approaches we tested, such as keeping only a hand-
ful of the best fits, or keeping just those whose values
of reduced χ2 were close to one, failed to accurately re-
produce the originalpole parameters. The whole analysis
was done in Wolfram Mathematica 7 using Nonlinear-
ModelFit routine [13].
Having defined the fitting strategy, we tested the

method by applying it to the case of the Z boson. The
data set we used is from the PDG compilation [1], and
shown in Fig. 1. Extracted pole masses are shown in the
same figure: filled histogram bins show pole masses from
the good fits, while the empty histogram bins are stacked
to the solid ones to show masses obtained in the discarded
fits. Height of the pole-mass histogram in Fig. 1 is scaled
for convenience.
Extracted S-matrix pole mass and width of Z boson

are given in Table I. The pole masses are in excelent
agreement, while the pole widths are reasonably close.
It is important to stress that the difference between the
pole and BWmass of the Z boson is fundamental and sta-
tistically significant. Distribution of discarded and good
results is shown in the lower part of Fig. 1.

TABLE I: Pole parameters of Z obtained in this work. PDG
values of pole and BW parameters are given for comparison.

Z Pole Pole PDG [1] BW PDG [1]

M/MeV 91159 ± 8 91162 ± 2 91188 ± 2

Γ/MeV 2484 ± 10 2494 ± 2 2495 ± 2

Next, we turn to the data from BaBar collaboration
[8] to determine whether the PDG averages for Υ(11020),
or the newly reported resonance parameters obtained in
Ref. [8] are correct.
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FIG. 1: [Upper figure] PDG compilation of Z data [1] and
histogram of obtained pole masses. Line is the fit result with
the lowest reduced χ2 (just for illustration). Dark (red online)
colored histogram bins are filled with statistically preferred
results. [Lower figure] Pole masses vs. pole widths. Dark
(red online) circles show statistically preferred results we use
for averages.

Our local fit of the Υ(11020) pole parameters is shown
in Fig. 2. As in the case of Z boson, the full and empty
histograms show how many of the extracted pole mass
fits were accepted or discarded in the analysis.

Average values obtained for the resonance mass and
the width are given in Table II, together with the same
parameters obtained in the BaBar analysis, and those
quoted by PDG. Extracted pole parameters of Υ(11020)
are practically the same as those reported in [8], even
though our parameterization is much simpler (single pole
plus constant background vs. two constant background,
and two pole terms). The original results cited in PDG
(from CUSB [15], and CLEO [16]) were obtained by fit-
ting Gaussians to the resonance peaks in the data, and
peak positions are usually closer to the BW mass.

To investigate this case further, we analyze another
resonance with strong difference between the pole and
BW mass, the Roper resonance N(1440). We extracted
Roper resonance pole parameters from the πN elastic P11
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histograms show how many of the extracted pole mass
fits were accepted or discarded in the analysis.

Average values obtained for the resonance mass and
the width are given in Table II, together with the same
parameters obtained in the BaBar analysis, and those
quoted by PDG. Extracted pole parameters of Υ(11020)
are practically the same as those reported in [8], even
though our parameterization is much simpler (single pole
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and two pole terms). The original results cited in PDG
(from CUSB [15], and CLEO [16]) were obtained by fit-
ting Gaussians to the resonance peaks in the data, and
peak positions are usually closer to the BW mass.

To investigate this case further, we analyze another
resonance with strong difference between the pole and
BW mass, the Roper resonance N(1440). We extracted
Roper resonance pole parameters from the πN elastic P11

Statistics of data interval fits
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RESONANCE PARAMETERS
S-MATRIX POLES ARE (UN)MEASURABLE?

6 41. Plots of cross sections and related quantities

σ and R in e+e− Collisions
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Figure 41.6: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.) See full-color
version on color pages at end of book.
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Citation: K. Nakamura et al. (Particle Data Group), JPG 37, 075021 (2010) (URL: http://pdg.lbl.gov)

Υ(11020) IG (JPC ) = 0−(1 −−)

Υ(11020) MASSΥ(11020) MASSΥ(11020) MASSΥ(11020) MASS

VALUE (GeV) DOCUMENT ID TECN COMMENT

11.019±0.008 OUR AVERAGE11.019±0.008 OUR AVERAGE11.019±0.008 OUR AVERAGE11.019±0.008 OUR AVERAGE

11.019±0.005±0.007 BESSON 85 CLEO e+ e− → hadrons

11.020±0.030 LOVELOCK 85 CUSB e+ e− → hadrons
• • • We do not use the following data for averages, fits, limits, etc. • • •

10.996±0.002 1 AUBERT 09E BABR e+ e− → hadrons
1 In a model where a flat non-resonant bb-continuum is incoherently added to a second
flat component interfering with two Breit-Wigner resonances. Systematic uncertainties
not estimated.

Υ(11020) WIDTHΥ(11020) WIDTHΥ(11020) WIDTHΥ(11020) WIDTH

VALUE (MeV) DOCUMENT ID TECN COMMENT

79±16 OUR AVERAGE79±16 OUR AVERAGE79±16 OUR AVERAGE79±16 OUR AVERAGE

61±13±22 BESSON 85 CLEO e+ e− → hadrons

90±20 LOVELOCK 85 CUSB e+ e− → hadrons
• • • We do not use the following data for averages, fits, limits, etc. • • •

37± 3 2 AUBERT 09E BABR e+ e− → hadrons
2 In a model where a flat non-resonant bb-continuum is incoherently added to a second
flat component interfering with two Breit-Wigner resonances. Systematic uncertainties
not estimated.

Υ(11020) DECAY MODESΥ(11020) DECAY MODESΥ(11020) DECAY MODESΥ(11020) DECAY MODES

Mode Fraction (Γi /Γ)

Γ1 e+ e− (1.6±0.5) × 10−6

Υ(11020) PARTIAL WIDTHSΥ(11020) PARTIAL WIDTHSΥ(11020) PARTIAL WIDTHSΥ(11020) PARTIAL WIDTHS

Γ
(
e+ e−

)
Γ1Γ

(
e+ e−

)
Γ1Γ

(
e+ e−

)
Γ1Γ

(
e+ e−

)
Γ1

VALUE (keV) DOCUMENT ID TECN COMMENT

0.130±0.030 OUR AVERAGE0.130±0.030 OUR AVERAGE0.130±0.030 OUR AVERAGE0.130±0.030 OUR AVERAGE

0.095±0.03 ±0.035 BESSON 85 CLEO e+ e− → hadrons

0.156±0.040 LOVELOCK 85 CUSB e+ e− → hadrons

Υ(11020) REFERENCESΥ(11020) REFERENCESΥ(11020) REFERENCESΥ(11020) REFERENCES

AUBERT 09E PRL 102 012001 B. Aubert et al. (BABAR Collab.)
BESSON 85 PRL 54 381 D. Besson et al. (CLEO Collab.)
LOVELOCK 85 PRL 54 377 D.M.J. Lovelock et al. (CUSB Collab.)
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FIG. 2: Υ(11020) resonance pole obtained by our method.
Grey (green online) rectangles represents PDG range for
Υ(11020) mass (both figures) and width (only lower figure).

TABLE II: Parameters of Υ(11020) meson. Pole parameters
are results of this work.

Υ(11020) Pole BaBar [1, 8] PDG [1]

M/MeV 10999 ± 1 10996 ± 2 11019 ± 8

Γ/MeV 38 ± 1 37 ± 3 79 ± 16

partial wave obtained in the GWU analysis [10]. Accord-
ing to PDG, this wave has a very rich structure: there
is a four-star Roper resonance, a three-star N(1710) res-
onance, and a one-star N(2100) resonance. However, the
GWU analysis reports only one resonance in this par-
tial wave, the Roper N(1440) resonance. In a prelimi-
nary analysis, we could see some indication for all reso-
nances mentioned by PDG but, for this study, we focus
on N(1440) because of its unusually strong shift between
the pole and BW mass (roughly 75 MeV).
Our results for N(1440) are given in Table III, where

we see that the pole parameters are in an excellent agree-
ment with the PDG estimates. Unlike the pole mass, BW
masses are situated closer to the positions of the peak (see
Figs. 2 and 3).
The field-theory reason for the resonance pole shift is

TABLE III: N(1440) resonance parameters.

N(1440) Pole Pole PDG [1] BW PDG [1]

M/MeV 1370 ± 6 1365 ± 15 1440 ±
30
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Γ/MeV 197 ± 6 190 ± 30 300 ±
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FIG. 3: N(1440) resonance pole obtained by our method.
Grey (green online) rectangles represents PDG range for
N(1440) Breit-Wigner mass (both figures) and width (only
lower figure).

the energy dependence of the imaginary part of resonance
self energy, which is commonly modeled by the energy
dependent width [18, 19]. Equation (1) would be exact if
the self energy was constant. In more realistic cases, the
T-matrix denominator D(W ) is given by

D(W ) = Mb −W − iΓ(W )/2, (3)

where we introduce the BW mass and Mb, which is gen-
erally not the real part of the pole position. Keeping only
the first two terms in Taylor expansion of Γ(W ) about
W = Mb (as done in Ref. [19]) the width becomes

Γ(W )/2 = Γb/2 + tan θ (W −Mb), (4)

where the Γb is a shorthand for Γ(Mb), and tan θ is the
slope of Γ/2 at W = Mb. The pole position Mp − iΓp/2
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is obtained by solving D(W ) = 0, which yields

Mp = Mb + sin θ cos θ Γb/2, (5)

Γp = cos2 θ Γb. (6)

Relations (5) and (6), originally introduced in Ref. [19],
may be used to cross check estimates for pole and BW pa-
rameters. Table IV shows angles θ for all resonances an-
alyzed in this paper, calculated from PDG estimates for
pole and BW widths using Eq. (6). Since Mp is smaller
than Mb, we chose negative θ solution (cf. Eq. (5). It
turns out that the BaBar value of Υ(11020) mass is
accurately reproduced.

TABLE IV: The connection between S-matrix pole and Breit-
Wigner parameters using only the PDG values.

θ/◦ Mp/MeV PDG[1] Mp/MeV Eq. (5)

∆(1232) -23.0 1210 ± 1 1210

N(1440) -37.3 1365 ± 15 1368

Υ(11020) -46.8 10996a ± 2 10999

Z -1.26 91162 ± 2 91161

aBaBar value.

Does this θ carry any physical meaning? For res-
onances with one dominant decay channel, such as
the ∆(1232), we can impose a unitarity condition
(ImT = |T |2) to Eq. (1) and learn that rp = e2iθ,
and bp = eiθ sin θ. It is the same θ and represents a half
of the complex residue phase. Indeed, from Ref. [1] we
read that ∆(1232) has (−47± 1)◦ for pole residue phase,
quite consistent with -46◦, a double value of the θ from
Table IV. However, this simple relation is lost when im-
portant inelastic channels are open, e.g. in the N(1440)
case, where 2 θ ≈ -75◦, which is significantly larger than
its residue phase -100◦ [1]. The difference comes from
different Γ(W ) in the denominator and numerator of T
matrix: total decay width is in the denominator, while
the partial widths are in the numerator. Since the energy
dependence of the two is in general different, their slopes
(i.e. tan θ) will be different as well.
Since our pole extraction method confirmed BaBar

result, the successful cross check is the last piece of the
puzzle. PDG estimates of Υ(11020) are consistent with
BW parameters.
In conclusion, we have developed a model-independent

method for extraction of resonance pole parameters from
total cross sections and partial waves. Very good esti-
mates for Z boson, Υ(11020), and N(1440) pole positions
were obtained. Furthermore, we showed that the strong
discrepancy between PDG estimates and BaBar result
for Υ(11020) comes from specious comparison of the pole
and BW mass.

We are today witnessing the dawn of ab-initio calcu-
lations in low-energy QCD. In order to compare theo-
retical predictions with experimentally determined res-
onance states, we need first to establish proper point of
comparison. The case of Υ(11020) is a vivid example how
particularly careful we must be when choosing this point.
Therefore, we would like to express our concern about
other potentially problematic comparisons between the
pole and BW parameters in the literature, in particular
in the Review of Particle Physics, and recommend draw-
ing a clear distinction between the two in future publica-
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FIG. 2: Υ(11020) resonance pole obtained by our method.
Grey (green online) rectangles represents PDG range for
Υ(11020) mass (both figures) and width (only lower figure).

TABLE II: Parameters of Υ(11020) meson. Pole parameters
are results of this work.

Υ(11020) Pole BaBar [1, 8] PDG [1]

M/MeV 10999 ± 1 10996 ± 2 11019 ± 8

Γ/MeV 38 ± 1 37 ± 3 79 ± 16

partial wave obtained in the GWU analysis [10]. Accord-
ing to PDG, this wave has a very rich structure: there
is a four-star Roper resonance, a three-star N(1710) res-
onance, and a one-star N(2100) resonance. However, the
GWU analysis reports only one resonance in this par-
tial wave, the Roper N(1440) resonance. In a prelimi-
nary analysis, we could see some indication for all reso-
nances mentioned by PDG but, for this study, we focus
on N(1440) because of its unusually strong shift between
the pole and BW mass (roughly 75 MeV).
Our results for N(1440) are given in Table III, where

we see that the pole parameters are in an excellent agree-
ment with the PDG estimates. Unlike the pole mass, BW
masses are situated closer to the positions of the peak (see
Figs. 2 and 3).
The field-theory reason for the resonance pole shift is

TABLE III: N(1440) resonance parameters.

N(1440) Pole Pole PDG [1] BW PDG [1]

M/MeV 1370 ± 6 1365 ± 15 1440 ±
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FIG. 3: N(1440) resonance pole obtained by our method.
Grey (green online) rectangles represents PDG range for
N(1440) Breit-Wigner mass (both figures) and width (only
lower figure).

the energy dependence of the imaginary part of resonance
self energy, which is commonly modeled by the energy
dependent width [18, 19]. Equation (1) would be exact if
the self energy was constant. In more realistic cases, the
T-matrix denominator D(W ) is given by

D(W ) = Mb −W − iΓ(W )/2, (3)

where we introduce the BW mass and Mb, which is gen-
erally not the real part of the pole position. Keeping only
the first two terms in Taylor expansion of Γ(W ) about
W = Mb (as done in Ref. [19]) the width becomes

Γ(W )/2 = Γb/2 + tan θ (W −Mb), (4)

where the Γb is a shorthand for Γ(Mb), and tan θ is the
slope of Γ/2 at W = Mb. The pole position Mp − iΓp/2
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self energy, which is commonly modeled by the energy
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T-matrix denominator D(W ) is given by
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where we introduce the BW mass and Mb, which is gen-
erally not the real part of the pole position. Keeping only
the first two terms in Taylor expansion of Γ(W ) about
W = Mb (as done in Ref. [19]) the width becomes
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where the Γb is a shorthand for Γ(Mb), and tan θ is the
slope of Γ/2 at W = Mb. The pole position Mp − iΓp/2

9

In order to pinpoint the statistical strategy to be used, we did a substantial 
number of simulations with the data sets that had known poles and zeros. It 
turned out that the most successful strategy  was to make an ordered list 
of all fit results, from best to worst, and then to drop the worst three 
quarters using the following goodness-of-fit measures: 

- Akaike information criterion [11], 
- Schwartz (Bayesian information) criterion [12], 
- P-values of the extracted fit parameters (in particular, Mp and Γp). 

Eventually, we kept the intersection of the fits that satisfied all criteria. 

Results closest to the original poles were produced by averaging the 
obtained pole positions of all good fits. The standard deviation turned out 
to be a good estimate for errors of obtained parameters. 

All other approaches we tested, such as keeping only a handful of the 
best fits, or keeping just those whose values of reduced χ2 were close to 
one, failed to accurately reproduce the original pole parameters. 
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the energy dependence of the imaginary part of resonance
self energy, which is commonly modeled by the energy
dependent width [18, 19]. Equation (1) would be exact if
the self energy was constant. In more realistic cases, the
T-matrix denominator D(W ) is given by

D(W ) = Mb −W − iΓ(W )/2, (3)

where we introduce the BW mass and Mb, which is gen-
erally not the real part of the pole position. Keeping only
the first two terms in Taylor expansion of Γ(W ) about
W = Mb (as done in Ref. [19]) the width becomes

Γ(W )/2 = Γb/2 + tan θ (W −Mb), (4)

where the Γb is a shorthand for Γ(Mb), and tan θ is the
slope of Γ/2 at W = Mb. The pole position Mp − iΓp/2
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In order to pinpoint the statistical strategy to be used, we did a substantial 
number of simulations with the data sets that had known poles and zeros. It 
turned out that the most successful strategy  was to make an ordered list 
of all fit results, from best to worst, and then to drop the worst three 
quarters using the following goodness-of-fit measures: 

- Akaike information criterion [11], 
- Schwartz (Bayesian information) criterion [12], 
- P-values of the extracted fit parameters (in particular, Mp and Γp). 

Eventually, we kept the intersection of the fits that satisfied all criteria. 

Results closest to the original poles were produced by averaging the 
obtained pole positions of all good fits. The standard deviation turned out 
to be a good estimate for errors of obtained parameters. 

All other approaches we tested, such as keeping only a handful of the 
best fits, or keeping just those whose values of reduced χ2 were close to 
one, failed to accurately reproduce the original pole parameters. 

Ceci, Korolija, Zauner; arXiv:1007.4207
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(A NOTE ON) THE BREIT-
WIGNER PARAMETERS

We could not find a simple (nor unique) parameterization of 
the amplitude that would result in the model independent 
Breit-Wigner parameters

For narrow resonances with small background, BW 
parameters are similar to the S-matrix pole parameters

Closest match, depending exclusively on the full amplitude 
in a model independent way, were K-matrix poles /
PLB 659 (2008) 228
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(A NOTE ON) ANALYTICITY
NECESSARY CONDITION FOR EXTRACTION?

Analyticity is assumed to be necessary model/
parameterization feature for the proper S-matrix pole 
extraction

We just showed that the S-matrix pole mass can 
(sometimes) be extracted without assuming analyticity

Is this the only such exception?
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A CRAZY NON-ANALYTICITY 
EXAMPLE 
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S-MATRIX POLES
CONCLUDING REMARKS

Can we say now that S-matrix mass may be measured directly?

If not, what about the Breit-Wigner mass? Can it be measured?

In both cases we need a particular (mathematical) parameterization or some 
(physical) model

All in all, by using simple parameterization and local sequential fitting 
excellent estimate of the S-matrix pole mass can be obtained

Current parameterization works all right for the S-matrix pole widths (we are 
improving it!)

The question: should we really abandon what we have learned just because 
the approach was not unitary, and had no (proper!) analyticity? 
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Thank you for your attention!
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