# Meson electro-production in the region of the Roper and the N(1535) resonance in chiral quark models

### Bojan Golli

Faculty of Education, University of Ljubljana and J. Stefan Institute, Ljubljana, Slovenia

in collaboration with Simon Širca (Ljubljana) Manuel Fiolhais, Pedro Alberto (Coimbra)

Eur. Phys. J. A **38**, 271 (2008), Eur. Phys. J. A **42**, 185 (2009), Eur. Phys. J. A (2011) **47**:61

### Outline

- Motivation and aims
- Basics of the method: incorporating quasi-bound quark-model states into the coupled channel formalism
- The underlying quark model: Cloudy bag model
- Scattering and electro-production amplitudes in the region of P11 resonances
- Negative parity resonances
  - S11 wave scattering and electro-production amplitudes
  - Preliminary results on S31, D13 and D33 resonances

### Summary

### The Coimbra - Ljubljana collaboration:

baryon resonances in quark models with meson clouds

**Coimbra:** João da Providencia, Manuel Fiolhais, Pedro Alberto, Luis Amoreira, Luis Alvares Ruso;

Ljubljana: Mitja Rosina, Simon Širca, B. G.

- $\Delta(1232)$  using
  - Inear σ-model with quarks (LSM)
  - Nambu Jona-Lasino models
- $\Delta(1232)$  and N(1440) using
  - chromodiectric model with pions and  $\sigma$ -mesons
- Second resonance region
  - Cloudy bag model

### Flashback: electro-excitation of $\Delta(1232)$

Helicity amplitudes for electro-excitation of  $\Delta(1232)$  in quark models with pion cloud, PLB **373** (1996) 229.

The pion cloud contributes almost half of the strength of the  $M_{1+}$  multipole and dominates the  $E_{1+}$  amplitudes.



▲□ > ▲圖 > ▲目 > ▲目 > □ = − の < @

### Aims of the present work

- Construct a coupled-channel approach that includes many-body states of quarks (and mesons) in the scattering formalism.
- Use the same approach for calculating scattering and electro-production amplitudes.
- Check the applicability of the method in a simple model of quarks coupled to mesons focusing on the second resonance region.
- Investigate whether the resonances in this region can be explained in terms of quarks (and mesons), or whether exotic degrees of freedom are needed.
- Study the role of the meson cloud.
- Establish a contact between the observed resonances and the quark-model calculations using bound-state boundary conditions.

### Some general features of the method

- Advantages
  - Baryons are treated as composite particles from the very beginning; the strong and electro-weak form-factors are derived from baryon internal structure and not inserted a posteriori; as a consequence the method introduces a much smaller number of free parameters.
  - The physical resonances appear as linear superpositions of bare resonances.
  - The bare quark-meson and quark-photon vertices are modified through meson loops as well as through mixing of resonances and coupling to the background.
  - The meson cloud around baryons is included in a consistent way also in the asymptotic states.
  - The method yields a symmetric K matrix and hence respects the unitarity of the S matrix.
- Present limitations
  - Because of the complex structure of the baryons in the model, the method does not support a very large set of ingredients.
  - ▶ No inclusion of meson-meson interaction or four-point interaction.

### Hamiltonian

## The meson field linearly couples to the quark core; no meson self-interaction or four-point interaction

$$H_{\text{meson}} = \int dk \sum_{lmt} \omega_k a_{lmt}^{\dagger}(k) a_{lmt}(k) + \left[ \frac{\mathbf{V}_{lmt}(k) a_{lmt}(k) + \mathbf{V}_{lmt}(k)^{\dagger} a_{lmt}^{\dagger}(k) \right]$$

 $V_{lmt}(k)$  induce also radial excitations of the quark core, e.g.  $1s \rightarrow 2s$ ,  $1s \rightarrow 1p_{1/2}$ ,  $1s \rightarrow 1p_{3/2}$ , ... transitions.

For example: V(k) from Cloudy Bag Model (s, p and d wave pions):

$$\begin{split} V_{1=0,t}^{s \to p_{1/2}}(k) &= \frac{1}{2f} \frac{k^2}{\sqrt{4\pi^2 \omega_k}} \sqrt{\frac{\omega_{p_{1/2}} \omega_s}{(\omega_{p_{1/2}} + 1)(\omega_s - 1)}} \frac{j_0(kR_{\text{bag}})}{kR_{\text{bag}}} \sum_{i=1}^3 \tau_t^i \\ V_{1mt}^{s \to s}(k) &= \frac{1}{2f} \frac{k^2}{\sqrt{12\pi^2 \omega_k}} \frac{\omega_s}{\omega_s - 1} \frac{j_1(kR_{\text{bag}})}{kR_{\text{bag}}} \sum_{i=1}^3 \sigma_m^i \tau_t^i \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

### Constructing the K-matrix

**Aim:** include many-body states of quarks in the scattering formalism (Chew-Low type approach)

Construct K-matrix in the spin-isospin (JI) basis:

$$K_{M'B'MB}^{II} = -\pi \sqrt{\frac{\omega_M E_B}{k_M W}} \langle \Psi_{JI}^{MB}(W) || V_{M'}(k) || \Psi_{B'} \rangle$$

by using principal-value (PV) states

$$|\Psi_{JI}^{MB}(W)\rangle = \sqrt{\frac{\omega_M E_B}{k_M W}} \left\{ \left[ a^{\dagger}(k_M) |\Psi_B\rangle \right]^{JI} - \frac{\mathcal{P}}{H - W} \left[ V(k_M) |\Psi_B\rangle \right]^{JI} \right\}$$

normalized as

$$\langle \Psi^{MB}(W)|\Psi^{M'B'}(W')\rangle = \delta(W-W')\delta_{MB,M'B'}(1+\mathbf{K}^2)_{MB,ME}$$

### Ansatz for the channel PV states

$$\begin{split} \Psi_{JI}^{MB} \rangle &= \sqrt{\frac{\omega_M E_B}{k_M W}} \bigg\{ [a^{\dagger}(k_M) | \Psi_B \rangle]^{JI} \\ &+ \sum_{\mathcal{R}} c_{\mathcal{R}}^{MB} | \Phi_{\mathcal{R}} \rangle \\ &+ \sum_{M'B'} \int \frac{\mathrm{d}k \, \chi^{M'B'MB}(k, k_M)}{\omega_k + E_{B'}(k) - W} \, [a^{\dagger}(k) | \Psi_{B'} \rangle]^{JI} \bigg\} \end{split}$$

Above the meson-baryon (MB) threshold:

$$K_{M'B'MB}(k,k_M) = \pi \sqrt{\frac{\omega_M E_B}{k_M W}} \sqrt{\frac{\omega_{M'} E_{B'}}{k_{M'} W}} \chi^{M'B'MB}(k,k_M)$$

 $2\pi$  decay through intermediate hadrons ( $\Delta(1232)$ , N(1440);  $\sigma$ ,  $\rho$ , ...)

Equations for meson amplitudes (Lippmann-Schwinger)

$$\begin{split} \chi^{M'B'MB}(k,k_M) &= -\sum_{\mathcal{R}} c_{\mathcal{R}}^{MB} V_{B'\mathcal{R}}^{M'}(k) + \mathcal{K}^{M'B'MB}(k,k_M) \\ &+ \sum_{M''B''} \int dk' \, \frac{\mathcal{K}^{M'B'M'B''}(k,k') \chi^{M''B''MB}(k',k_M)}{\omega'_k + E_{B''}(k') - W} \end{split}$$

#### with kernels

$$\mathcal{K}^{M'B'MB}(k,k') = \sum_{B''} f_{BB'}^{B''} \frac{\mathcal{V}_{B''B'}^{M'}(k') \, \mathcal{V}_{B''B}^{M}(k)}{\omega_k + \omega'_k + E_{B''}(\bar{k}) - W}$$

 $(f_{BB'}^{B''}$  are spin-isospin coefficients)

The solution assumes the form

$$\chi^{M'B'MB}(k,k_M) = -\sum_{\mathcal{R}} c_{\mathcal{R}}^{MB} \mathcal{V}_{B'\mathcal{R}}^{M'}(k) + \mathcal{D}^{M'B'MB}(k,k_M)$$

### Solving the coupled equations

Dressed vertices then satisfy:

$$\mathcal{V}_{B\mathcal{R}}^{M}(k) = V_{B\mathcal{R}}^{M}(k) + \sum_{M'B'} \int dk' \frac{\mathcal{K}^{MBM'B'}(k,k') \mathcal{V}_{B'\mathcal{R}}^{M'}(k')}{\omega_{k}' + E_{B'}(k') - W}$$

and similarly the background part of the amplitude:

$$\mathcal{D}^{M'B'MB}(k,k_M) = \mathcal{K}^{M'B'MB}(k,k_M) + \sum_{M''B''} \int dk' \, \frac{\mathcal{K}^{M'B'M''B''}(k,k')\mathcal{D}^{M''B''MB}(k',k_M)}{\omega'_k + E_{B''}(k') - W}$$

The coefficients  $c_{\mathcal{R}'}^{MB}$  in front of the quasi-bound states satisfy a set of equations:

$$\sum_{\mathcal{R}'} A_{\mathcal{R}\mathcal{R}'}(W) c_{\mathcal{R}'}^{MB}(W) = \mathcal{V}_{B\mathcal{R}}^{M}(k_{M})$$

$$A_{\mathcal{R}\mathcal{R}'} = (W - M_{\mathcal{R}}^0)\delta_{\mathcal{R}\mathcal{R}'} + \sum_{\mathcal{B}'} \int dk \, \frac{\mathcal{V}_{B'\mathcal{R}}^{M'}(k) \, V_{B'\mathcal{R}'}^{M'}(k)}{\omega_k + E_{B'}(k) - W}$$

### Mixing of bare resonances

To solve the set of equations, diagonalize A to obtain U, along with the poles of the K matrix, and wave-function normalization Z:

$$UAU^{T} = \begin{bmatrix} Z_{\mathcal{R}}(W)(W - M_{\mathcal{R}}) & 0 & 0 \\ 0 & Z_{\mathcal{R}'}(W)(W - M_{\mathcal{R}'}) & 0 \\ 0 & 0 & Z_{\mathcal{R}''}(W)(W - M_{\mathcal{R}''}) \end{bmatrix}$$

As a consequence,  $\Phi_{\mathcal{R}}$  mix:

$$|\tilde{\Phi}_{\mathcal{R}}\rangle = \sum_{\mathcal{R}'} U_{\mathcal{R}\mathcal{R}'} |\Phi_{\mathcal{R}}\rangle \qquad \tilde{\mathcal{V}}_{\mathcal{B}\mathcal{R}} = \frac{1}{\sqrt{Z_{\mathcal{R}}(W)}} \sum_{\mathcal{R}'} U_{\mathcal{R}\mathcal{R}'} \mathcal{V}_{\mathcal{B}\mathcal{R}'}$$

Solution for the K matrix

$$K_{MB,M'B'} = \pi \sqrt{\frac{\omega_M E_B}{k_M W}} \sqrt{\frac{\omega_{M'} E_{B'}}{k_{M'} W}} \left[ \sum_{\mathcal{R}} \frac{\widetilde{\mathcal{V}}_{B\mathcal{R}}^M \widetilde{\mathcal{V}}_{B'\mathcal{R}}^{M'}}{(M_{\mathcal{R}} - W)} + \mathcal{D}_{MB,M'B'} \right]$$

and for the T matrix

$$T_{MB,M'B'} = K_{MB,M'B'} + i \sum_{M''K''} T_{MB,M''B''} K_{M''B'',M'B'}$$

### Approximation: separable kernels

$$\frac{1}{\omega_k + \omega'_k + E_{B''} - W} \approx \frac{(\omega_M + \omega_{M'} + E_{B''} - W)}{(\omega_k + E_{B''} - E_{B'})(\omega'_k + E_{B''} - E_B)}$$
$$W = E_B + \omega_M = E_{B'} + \omega_{M'}$$

The approximation has the property:

$$\mathcal{K}^{M'B'MB}(k, k_{M'})^{\text{approx}} = \mathcal{K}^{M'B'MB}(k, k_{M'})^{\text{exact}}$$

and preserves the symmetry of the K-matrix:  $K_{MB,M'B'} = K_{M'B',MB}$  and, as a consequence, the unitarity of the S-matrix.

Further simplification; for  $\mathcal{V}_{BB'}$  entering the kernel  $\mathcal{K}^{M'B'MB}(k,k_M)$ :

$$\mathcal{V}^{M}_{BB'}(\text{dressed}) = r^{M}_{BB'} V^{M}_{BB'}(\text{bare}) \qquad r^{M}_{BB'} = \text{const}$$

e.g.  $r_{N\Delta}^{l=1 \text{ pions}} = 1.3$ , as determined by solving the coupled equations in the P33 partial wave. Most  $r_{BB'}^M = 1$ .

### Including the $\gamma N$ channel

Only the strong  $T_{MB,M'B'}$  appears on the RHS:

$$T_{MB,\gamma N} = K_{MB,\gamma N} + i \sum_{M'K'} T_{MB,M'B'} K_{M'B',\gamma N}$$

$$K_{M'B',\gamma N} = -\pi \sqrt{\frac{\omega_{\gamma} E_N}{k_{\gamma} W}} \langle \Psi_{JI}^{M'B'} || V_{\gamma} || \Psi_N \rangle$$

Choosing a resonance,  $\mathcal{R} = N^*$ , the principal-value state can be split into the resonant and background parts:

$$\begin{split} |\Psi_{JI}^{MB}\rangle &= \sqrt{\frac{\omega_{M}E_{B}}{k_{M}W}} \bigg\{ \widetilde{c}_{\mathcal{N}^{*}}^{MB} |\widetilde{\Phi}_{\mathcal{N}^{*}}\rangle + \widetilde{c}_{\mathcal{N}^{*}}^{MB} \sum_{M'B'} \int \frac{dk}{\omega_{k} + E_{B'} - W} [a^{\dagger}(k)|\widetilde{\Psi}_{B'}\rangle]^{JI} \\ &+ [a^{\dagger}(k_{M})|\widetilde{\Psi}_{B}\rangle]^{JI} + \sum_{\mathcal{R} \neq N^{*}} \widetilde{c}_{\mathcal{R}}^{MB} |\widetilde{\Phi}_{\mathcal{R}}\rangle + \cdots \bigg\} \\ &= -K_{MBM'B'} \sqrt{\frac{k_{M}W}{\pi^{2}\omega_{M}E_{B}}} \frac{1}{\widetilde{\mathcal{V}}_{B'\mathcal{N}^{*}}^{M'}} \left|\widehat{\Psi}_{\mathcal{N}^{*}}^{\text{res}}\rangle + |\Psi_{JI}^{MB(bkg)}\rangle \\ \\ \text{Note} \quad \widetilde{c}_{\mathcal{N}^{*}}^{MB} = \frac{\widetilde{\mathcal{V}}_{B\mathcal{N}^{*}}^{M}}{W - M_{N^{*}}} \quad \text{and} \quad \sqrt{\frac{\pi\omega_{\gamma}E_{N}}{k_{\gamma}W}} \widetilde{\mathcal{V}}_{B\mathcal{N}^{*}}^{M} = \sqrt{\Gamma_{B\mathcal{N}^{*}}} \end{split}$$

### Evaluation of the amplitudes

The resonant part of the amplitude can then be written as:

$$\mathcal{M}_{MB\gamma N}^{(\mathrm{res})} = \sqrt{\frac{\omega_{\gamma} E_{N}^{\gamma}}{\omega_{M} E_{B}}} \frac{1}{\pi \mathcal{V}_{BN^{*}}} \underbrace{\langle \Psi_{N^{*}}^{(\mathrm{res})}(W) | \tilde{V}_{\gamma} | \Psi_{N} \rangle}_{A_{N^{*}}} T_{MBMB}$$

while the resonance pole is absent in the eq. for the background part:

$$\mathcal{M}_{MB\gamma N}^{(\mathrm{bkg})} = \mathcal{M}_{MB\gamma N}^{K\,(\mathrm{bkg})} + \mathrm{i}\sum_{M'B'} T_{MBM'B'} \mathcal{M}_{M'B'\gamma N}^{K\,(\mathrm{bkg})}$$

The **helicity amplitude**  $A_{N*}$  for electro-excitation:

$$A_{N^*} \equiv \langle \Psi_{N^*}^{(\text{res})}(W) | \tilde{V}_{\gamma} | \Psi_N \rangle$$

The resonant state takes the form:

$$|\Psi_{N^*}^{(\text{res})}(W)\rangle = \frac{1}{\sqrt{Z_{N^*}}} \left\{ |\widetilde{\Phi}_{N^*}\rangle - \sum_{MB} \int \frac{\mathrm{d}k \quad \widetilde{\mathcal{V}}_{BN^*}^M(k)}{\omega_k + E_B - W} \left[a^{\dagger}(k)|\Psi_B\rangle\right]^{JI} \right\}$$

### Cloudy Bag Model

Provides a consistent parametrization of the baryon-meson and baryon-photon coupling constants and form factors in terms of " $f_{\pi}$ " and the bag radius  $R_{\text{bag}}$ .

From the ground state calculation:  $R_{bag} = 0.83$  fm,  $f_{\pi} = 76$  MeV (reproducing the experimental value of  $g_{\pi NN}$ )

similar results for 0.75 fm  $< R_{bag} < 1.0$  fm

Free parameters: bare masses of the resonances

# Form factors of S-, P- and D-wave mesons-quark interaction

Determined by the bag radius  $R_{\text{bag}} = 0.83$  fm

Equivalent dipole momentum cut-off:



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

### $\pi$ -quark vertex: S, P, and D-wave pions

$$\begin{split} V_{l=0,t}^{\pi}(k) &= \frac{1}{2f_{\pi}} \sqrt{\frac{\omega_{p_{1/2}}\omega_s}{(\omega_{p_{1/2}}+1)(\omega_s-1)}} \frac{1}{2\pi} \frac{k^2}{\sqrt{\omega_k}} \frac{j_0(kR)}{kR} \sum_{i=1}^3 \tau_t(i) \, \mathcal{P}_{sp}(i) \\ V_{1mt}^{\pi}(k) &= \frac{1}{2f_{\pi}} \frac{\omega_s}{(\omega_s-1)} \frac{1}{2\pi} \frac{1}{\sqrt{3}} \frac{k^2}{\sqrt{\omega_k}} \frac{j_1(kR)}{kR} \sum_{i=1}^3 \tau_t(i) \\ &\times \left(\sigma_m(i) + \frac{\omega_{p_{1/2}}(\omega_s-1)}{\omega_s(\omega_{p_{1/2}}+1)} \, S_{1m}^{[\frac{1}{2}]}(i) + \frac{2\omega_{p_{3/2}}(\omega_s-1)}{5\omega_s(\omega_{p_{3/2}}-2)} \, S_{1m}^{[\frac{3}{2}]}(i) \right) \end{split}$$

$$V_{2mt}^{\pi}(k) = \frac{1}{2f_{\pi}} \sqrt{\frac{\omega_{p_{3/2}}\omega_s}{(\omega_{p_{3/2}}-2)(\omega_s-1)}} \frac{\sqrt{2}}{2\pi} \frac{k^2}{\sqrt{\omega_k}} \frac{j_2(kR)}{kR} \sum_{i=1}^3 \tau_t(i) \Sigma_{2m}^{\left[\frac{1}{2}\frac{3}{2}\right]}(i)$$

$$\begin{aligned} \mathcal{P}_{sp} &= \sum_{m_j} |sm_j\rangle \langle p_{1/2}m_j| \quad S_{1m}^{\left[\frac{3}{2}\right]} = \frac{\sqrt{15}}{2} \sum_{m_j m'_j} C_{\frac{3}{2}m'_j 1m}^{\frac{3}{2}} |p_{3/2}m_j\rangle \langle p_{3/2}m'_j| \\ S_{1m}^{\left[\frac{1}{2}\right]} &= \sqrt{3} \sum_{m_j m'_j} C_{\frac{1}{2}m'_j 1m}^{\frac{1}{2}} |p_{1/2}m_j\rangle \langle p_{1/2}m'_j| \quad \Sigma_{2m}^{\left[\frac{1}{2}\frac{3}{2}\right]} = \sum_{m_s m_j} C_{\frac{3}{2}m_j 2m}^{\frac{1}{2}m_s} |sm_s\rangle \langle p_{3/2}m_j| \end{aligned}$$

Summary

### $\eta$ -quark and K-quark vertex (S-wave)

$$V^{\eta}(k) = \frac{1}{2f_{\eta}} \sqrt{\frac{\omega_{p_{1/2}}\omega_s}{(\omega_{p_{1/2}}+1)(\omega_s-1)}} \frac{1}{2\pi} \frac{k^2}{\sqrt{\omega_k}} \frac{j_0(kR)}{kR} \sum_{i=1}^3 \lambda_8(i) \mathcal{P}_{sp}(i)$$

$$\begin{split} V_t^K(k) &= \frac{1}{2f_K} \sqrt{\frac{\omega_{p_{1/2}}\omega_s}{(\omega_{p_{1/2}}+1)(\omega_s-1)}} \frac{1}{2\pi} \frac{k^2}{\sqrt{\omega_k}} \frac{j_0(kR)}{kR} \\ &\times \sum_{i=1}^3 (V_t(i) + U_t(i)) \, \mathcal{P}_{sp}(i) \end{split}$$

 $t = \pm \frac{1}{2}, V_{\pm t} = (\lambda_4 \pm i\lambda_5)/\sqrt{2} \ U_{\pm t} = (\lambda_6 \pm i\lambda_7)/\sqrt{2}$ 

 $f_{\eta} = f_{\pi}$  or  $f_{\eta} = 1.2 f_{\pi}$  $f_K = 1.20 f_{\pi}.$ 

 $\rho\text{-quark}$  vertex (S =  $\frac{1}{2}$ , S-wave and S =  $\frac{3}{2}$ , D-wave)

$$\begin{split} V_{l=0mt}^{\rho}(k) &= \frac{1}{2f_{\rho}} \sqrt{\frac{\omega_{s}}{(\omega_{s}-1)}} \frac{1}{2\pi} \frac{k^{2}}{\sqrt{\omega_{k}}} \frac{j_{0}(kR)}{kR} \sum_{i} \tau_{t}(i) \\ &\times \left(\frac{\sqrt{8}}{3} \sqrt{\frac{\omega_{p_{1/2}}}{\omega_{p_{1/2}+1}}} \Sigma_{1m}^{\left[\frac{1}{2}\right]} + 3\sqrt{\frac{\omega_{p_{3/2}}}{\omega_{p_{3/2}-2}}} \Sigma_{1m}^{\left[\frac{1}{2}\frac{3}{2}\right]}(i) \right) \\ V_{l=2mt}^{\rho}(k) &= \frac{1}{2f_{\rho}} \sqrt{\frac{\omega_{p_{3/2}}}{(\omega_{p_{3/2}-2})(\omega_{s}-1)}} \frac{1}{2\pi} \frac{1}{3} \frac{k^{2}}{\sqrt{\omega_{k}}} \frac{j_{2}(kR)}{kR}}{\frac{1}{2}} \sum_{i=1}^{3} \tau_{t}(i) \Sigma_{1m}^{\left[\frac{1}{2}\frac{3}{2}\right]}(i) \end{split}$$

 $f_{
m 
ho}=200~{
m MeV}$ 

$$\Sigma_{1m}^{\left[\frac{1}{2}\right]} = \sum_{m_s m_j} C_{\frac{1}{2}m_j 1m}^{\frac{1}{2}m_s} |sm_s\rangle \langle p_{1/2}m_j| \quad \Sigma_{1m}^{\left[\frac{1}{2}\frac{3}{2}\right]} = \sum_{m_s m_j} C_{\frac{3}{2}m_j 1m}^{\frac{1}{2}m_s} |sm_s\rangle \langle p_{3/2}m_j|$$

Summary

### P11 $\pi N \rightarrow MB$

**Channels**:  $\pi N$ ,  $\pi \Delta$ ,  $\sigma N$ ,  $M\pi R$  (preliminary:  $\eta N$ ,  $K\Lambda$ ) Parameters of the  $\sigma N$ -channel:  $g_{\sigma NR} = 1$ ,  $m_{\sigma} = 450$  MeV,  $\Gamma_{\sigma} = 550$  MeV



### P11 photoproduction ( $\gamma p \rightarrow \pi N$ , $\gamma n \rightarrow \pi N$ )



Sac

э

### P11 helicity amplitudes

### Meson-cloud effects dominates the behaviour of the amplitudes at low $Q^2$



### P33 $\pi N \rightarrow MB$

**Channels**:  $\pi N$ ,  $\pi \Delta$ ,  $\pi R$ ,  $\sigma \Delta$ ,  $g_{\pi N\Delta} = 1.05 g_{\pi N\Delta}(CBM)$ 

**Resonances**:  $\Delta(1232)$ ,  $\Delta(1600)$  at K-matrix pole  $M_R = 1780$  MeV.



Thin lines: only  $\pi N$  and  $\pi \Delta$  channels included

Thick lines:  $\pi R$ ,  $\sigma \Delta$  channels added

Assuming  $(1s)^1(2p)^2$  configuration for the N(1720)P13 and  $\Delta(1910)$ P31 resonances and keeping the same  $R_{\text{bag}}$ :  $g_{\pi NN^*} = 0$ .

### S11 resonances

Single-quark excitations  $1s \rightarrow 1p_{1/2}$  and  $1s \rightarrow 1p_{1/3}$ 

$$\Phi(1535) = -\sin \vartheta_s |^4 \vartheta_{1/2} \rangle + \cos \vartheta_s |^2 \vartheta_{1/2} \rangle$$
  
=  $c_A^1 |(1s)^2 (1p_{3/2})^1 \rangle + c_P^1 |(1s)^2 (1p_{1/2})^1 \rangle_1 + c_{P'}^1 |(1s)^2 (1p_{1/2})^1 \rangle_2$ 

$$\Phi(1650) = \cos \vartheta_s |^4 \aleph_{1/2} \rangle + \sin \vartheta_s |^2 \aleph_{1/2} \rangle$$
  
=  $c_A^2 |(1s)^2 (1p_{3/2})^1 \rangle + c_P^2 |(1s)^2 (1p_{1/2})^1 \rangle_1 + c_{P'}^2 |(1s)^2 (1p_{1/2})^1 \rangle_2$ 

 $c_A^1 = \frac{1}{3}(2\cos\vartheta_s - \sin\vartheta_s), \qquad c_A^2 = \frac{1}{3}(\cos\vartheta_s + 2\sin\vartheta_s), \qquad \vartheta_s \approx -30^\circ$ 

Myhrer, Wroldsen / Z. Phys. C 25 (1984) 281

 $\vartheta_s$  is a free parameter in the calculation

イロト イポト イヨト イヨト

э

S11  $(N_2^{1-}(1535) \text{ and } N_2^{1-}(1650)) \quad \pi N \to MB$ 



Modified QM:

 $g_{M\Delta N^*} = 0.5 g_{M\Delta N^*}^{\text{CBM}}$ 

### S11 resonances

 $N_{\overline{2}}^{1-}(1535)$ 

|             | Γ <sub>tot</sub> | $\Gamma_i/\Gamma_{\rm tot}$ |                             |                            |                            |               |    |
|-------------|------------------|-----------------------------|-----------------------------|----------------------------|----------------------------|---------------|----|
|             | [MeV]            | πΝ                          | ηΝ                          | $\pi\Delta$ D-wave         | $ ho_1 N$ S-wave           | $\pi R$       | ΚΛ |
| Quark Model | 95               | 0.43                        | 0.54                        | 0.02                       | 0.01                       | 0             | 0  |
| Modified QM | 94               | 0.43                        | 0.54                        | 0.01                       | 0.01                       | 0             | 0  |
| PDG         | 125<br>-175      | 0.35<br>- 0.35              | $\substack{0.529\\\pm0.02}$ | $\substack{0.01\\\pm0.01}$ | $\substack{0.02\\\pm0.01}$ | 0.08<br>±0.02 |    |

 $N_{2}^{1-}(1650)$ 

|          | $\Gamma_{tot}$ | $\Gamma_i/\Gamma_{\rm tot}$ |                              |                            |                            |                            |                 |
|----------|----------------|-----------------------------|------------------------------|----------------------------|----------------------------|----------------------------|-----------------|
|          | [MeV]          | $\pi N$                     | $\eta N$                     | $\pi\Delta$                | $\rho_1 N$                 | $\pi R$                    | ΚΛ              |
|          |                |                             |                              | D-wave                     | S-wave                     |                            |                 |
| Quark M. | 134            | 0.63                        | 0.01                         | 0.19                       | 0.03                       | 0.05                       | 0.09            |
| Modified | 122            | 0.72                        | 0.01                         | 0.08                       | 0.03                       | 0.05                       | 0.10            |
| PDG      | 145<br>-185    | 0.60<br>- 0.95              | $\substack{0.023\\\pm0.022}$ | $\substack{0.02\\\pm0.01}$ | $\substack{0.01\\\pm0.01}$ | $\substack{0.03\\\pm0.01}$ | 0.029<br>±0.004 |

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

### S11 photoproduction ( $\gamma p \rightarrow \pi N$ , $\gamma n \rightarrow \pi N$ )



Sac

### S11 $\gamma p \rightarrow \eta N$



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

### S11 $\gamma p \rightarrow K^+ \Lambda$



### S11 helicity amplitudes



900

・ロト ・日子・ ・ 田子・ ・

注入 注

S31  $(\Delta_2^{\pm^-}(1620))$   $\pi N \to MB$ 



|             | Γ <sub>tot</sub> | $\Gamma_i/\Gamma_{\rm tot}$ |                    |                  |                 |  |
|-------------|------------------|-----------------------------|--------------------|------------------|-----------------|--|
|             | [MeV]            | πΝ                          | $\pi\Delta$ D-wave | $ ho_1 N$ S-wave | $\pi R$         |  |
| Quark Model | 35               | 0.41                        | 0.43               | 0.15             | 0.02            |  |
| Modified QM | 97               | 0.36                        | 0.44               | 0.17             | 0.02            |  |
| PDG         | 135-150          | 0.2 - 0.3                   | 0.39±0.02          | $0.14{\pm}0.03$  | $0.00{\pm}0.01$ |  |

D13  $(N_2^{3-}(1520) \text{ and } N_2^{3-}(1700)) \quad \pi N \to MB$ 



Quark model: no mixing of resonances Modified QM:  $g_{MNN^*} = 1.8 g_{MNN^*}^{CBM}$ S-wave:  $g_{M\Delta N^*} = 0.37 g_{MNN^*}^{CBM}$ , D-wave:  $g_{M\Delta N^*} = 1.8 g_{MNN^*}^{CBM}$ K-matrix pole  $M_{N^*} = 1650$  MeV

### D13 resonance

 $N_{\overline{2}}^{3-}(1520)$ 

|             | Γ <sub>tot</sub> | $\Gamma_i/\Gamma_{\rm tot}$ |                 |                 |                 |  |
|-------------|------------------|-----------------------------|-----------------|-----------------|-----------------|--|
|             | [MeV]            | $\pi N$                     | $\pi\Delta$     | $\pi\Delta$     | $ ho_1 N$       |  |
|             |                  |                             | S-wave          | D-wave          | S-wave          |  |
| Quark Model | 169              | 0.16                        | 0.81            | 0.01            | 0.01            |  |
| Modified QM | 130              | 0.60                        | 0.33            | 0.01            | 0.01            |  |
| PDG         | 100-125          | 0.55 - 0.65                 | $0.15{\pm}0.02$ | $0.11{\pm}0.02$ | $0.09{\pm}0.01$ |  |

 $N_{\frac{3}{2}}^{3-}(1700)$ 

|             | Γ <sub>tot</sub> | $\Gamma_i/\Gamma_{\rm tot}$ |                   |                   |                   |  |
|-------------|------------------|-----------------------------|-------------------|-------------------|-------------------|--|
|             | [MeV]            | $\pi N$                     | $\pi\Delta$       | $\pi\Delta$       | $ ho_1 N$         |  |
|             |                  |                             | S-wave            | D-wave            | S-wave            |  |
| Quark Model | 557              | 0.01                        | 0.94              | 0.05              | 0.00              |  |
| Modified QM | 134              | 0.00                        | 0.33              | 0.63              | 0.03              |  |
| PDG         | 50-150           | 0.05 - 0.15                 | $0.11 {\pm} 0.01$ | $0.79 {\pm} 0.01$ | $0.07 {\pm} 0.01$ |  |

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

### D33 $(\Delta_2^{3^-}(1700))$ $\pi N \to MB$



Modified QM:  $g_{MNN^*} = 2.5 g_{MNN^*}$ CBM, K-matrix pole  $M_{N^*} = 1650$  MeV

|             | Γ <sub>tot</sub> | $\Gamma_i/\Gamma_{\rm tot}$ |                    |                    |                  |  |
|-------------|------------------|-----------------------------|--------------------|--------------------|------------------|--|
|             | [MeV]            | $\pi N$                     | $\pi\Delta$ S-wave | $\pi\Delta$ D-wave | $ ho_1 N$ S-wave |  |
| Quark Model | 199              | 0.03                        | 0.88               | 0.06               | 0.04             |  |
| Modified QM | 232              | 0.14                        | 0.78               | 0.05               | 0.03             |  |
| PDG         | 200-400          | 0.1 - 0.2                   | $0.90 {\pm} 0.02$  | $0.04{\pm}0.01$    | $0.01{\pm}0.01$  |  |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

### Summary

- Using the same set of parameters in all considered partial waves we have been able to reproduce the main features of π- and γ-induced production of pions, η mesons, and kaons.
- ► The role of the meson cloud turns out to be important in two aspects: it enhances the bare baryon-meson couplings and improves the behaviour of the helicity amplitudes in the region of low Q<sup>2</sup>.
- ► The enhancement turns out to be **stronger in** the case of the **P11** and **P33** resonances **than** in the case of the **S11** resonances which are dominated by the contribution from the quark core.
- The couplings of the resonances to different inelastic channels are reasonably well reproduced, particularly in the ηN channel, but – probably – overestimated in the case of the σN and KA channels.
- The coupling of D-wave mesons is not well described: the strength is too weak at small and too strong at large momentum transfer; similarly strength of the S-wave πΔ channel is overestimated.