THE PARTICLE DATA GROUP:
A SHORT HISTORY AND HOW IT WORKS

(and some current issues)
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Tl pause for a moment so you can let this information sink in.”



BEGINNINGS

W.H. Barkas & A.H. Rosenfeld, UCRL-8030, Data for Elementary
Particle Physics, 1957 (not published
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The first Wallet Card, 1958.



WHO IS ROSENFELD?

Enrico Fermi’s last graduate student:

Nuclear
Physics

A Course Given by ENRICO FERMI

at the University of Chicago. Notes Compiled by
Jay Orear, A. H. Rosenfeld, and R. A. Schluter

Revised Edition

GRAS

&)

THE UNIVERSITY OF CHICAGO PRESS

One of the pillars of the Alvarez Group. Spearheaded the effort be-
ginning in the late 1950s to “computerize” data analysis of photos
taken in the series of larger and larger Alvarez Group hydrogen bub-
ble chambers running at the Berkeley Bevatron.

After the first gas crisis in 1973, left particle physics for energy conser-
vation, especially in buildings and appliances. Winner of the Enrico
Fermi Award (2006), and many other awards.



WHY BERKELEY? WHY THE ALVAREZ GROUP?

Because particles (but not N*s) were being discovered by the Alvarez
Group in bubble chambers at the Bevatron.

Discovered by the Alvarez Group (list not complete):

1960 X(1385)

1961 K*(892), A(1405), w(782)
1962 A(1520)

1963 %(1775)

1966 3(2030), A(2100)

Discovered in the Alvarez 72-in chamber by other groups:

1961 n(548) (Johns Hopkins U.)
1962 E(1530) (UCLA).

(1]

The 1968 Nobel Prize in Physics, awarded to Luis W. Alvarez:

“For his decisive contributions to elementary particle physics, in par-
ticular the discovery of a large number of resonant states, made possi-
ble through his development of the technique of using hydrogen bubble
chambers and data analysis.”



GROWTH

1968: The first Particle Data Booklet, and the “Particle Data Group.”

ROSENFELD ET AL. Data on Particles and Resonant States 83

BARYONS - January, 1968.
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In this era, the tables were commmonly referred to as “the Rosenfeld
tables.”



THE HEYDAY OF N* PHYSICS

(at least as far as the Particle Data Group was concerned)

Handbook of Pion-Nucleon Scattering, Physics Data 12-1 (1979)
G. Hohler, Kaiser, R. Koch, E. Pietarinen,
Karlsruhe & Helsinki

”Pion-nucleon partial-wave amplitudes,” Phys. Rev. D20 (1979) 2839,
R.E. Cutkosky, C.P. Forsyth, R.E. Hendrick, R.L. Kelly,
Carnegie-Mellon & LBL.

Bob Kelly head of the Particle Data Group, ~ 1975-1981.

Later history is probably better known to the audience than to me.



VIIL12
Baryon Full Listings
N'sand A's

1.009011) 100 qmres)

T T e esee eeo | T e e e e
N(LasolN, 1\ 78] : ﬂ(l;lo) e
N1sss) . | AN il
: I - i '
\j" : K_W” |
! -2
Trow

y o
25 solior e 2900 w0 s e a6 so'tor ‘ideo’ 170 'zwos 'aaes

17002000
INERGY (MeV) R uERGY (uev)

.
-

= wN ELASTIC S11 AMPLITUDE N ELASTIC P11 AMPLITUDE
1760 1700
2000 2000 ' 2000 h2000
2300 2300 2300 2300

INERSY (MeV) INERSY (MeY) INERCY (MeY) ENIRGY (MeV)
1 .ITll'l)l 1.001M(013)

» ]

N(1520)
_________ . e — o]
(2080) J

N(y700)
- o ) g .
L

1 1400 1700 2000 2300 T 1400 1700 2000 e300
EC sz 7]
~

}
|
|
|
| N(2080)
| Koy /% =
| i o o S
0 -es o s s s mo%iee Tteeo’ iro0 1000 2300 I AT T THT TH T YT TS
S Trv eReY (o) BERGY (Mo
™ 1000 :
7N ELASTIC P13 AMPLITUDE #N ELASTIC D13 AMPLITUDE
1100 Y 1700 1700
2000 2000 2000
ase0 2300 2300
ey (uev) Extxey (e ReY (M) ERERCY (M)

XBL 824-9320

Fig. 1(a). The Lysas = S11, Pi1, P13, and Dy3 partial-wave amplitudes for 7V elastic scattering. The upper plot for each
amplitude is from HOEHLER 79 and the lower one is from CUTKOSKY 80. In the Argand plots, the ticks are at integral
multiples of 50 MeV, and the established resonances are shown at their nominal positions. The real and imaginary parts
of the amplitudes as functions of energy are shown projected in alignment with the Argand plots (in the projections of
the CUTKOSKY 80 amplitudes, the “data points” are results of energy-independent fits, and the curves are from an
energy-dependent fit to join them).



See key on page IV.1
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Fig. 1(b). The Loroy = D15, Fis5, Fi7, and Gy7 partial-wave amplitudes for 7N elastic scattering. The upper plot for each
amplitude is from HOEHLER 79 and the lower one is from CUTKOSKY 80. In the Argand plots, the ticks are at integral
multiples of 50 MeV, and the established resonances are shown at their nominal positions. The real and imaginary parts
of the amplitudes as functions of energy are shown projected in alignment with the Argand plots (in the projections of
the CUTKOSKY 80 amplitudes, the “data points” are results of energy-independent fits, and the curves are from an

energy-dependent fit to join them).



VIIL15

See key on page IV.1 Baryon Full Listings
N'sand A's
A\b ________ " ‘i. _______ ]
I,I e e e Ii e e
I 1
| | (1910 ™
I |
I I “l
I | )
| |
| o S I L N —
-0 s ° s -28 ° L] 840 1108 100 1700 2000 2300 -850 -8 ° '3 -8 s 50 1100 1400 1700 2000 2300
EXZRGY (M) foe W) TIoT INERGY (MeV)
#N ELASTIC S31 AMPLITUDE " e #N ELASTIC P31 AMPLITUDE
—— e

14(r33)
8-

o
N

Td0" 1700

EXTRCY (MeV)

mN ELASTIC P33 AMPLITUDE

oxReT (Mev)

ENERGY (MeV)

o

10’ o eshe e300

Filosn

1

f{,,..

ENRRGY (MaV)

oxeney (i)

v

nN ELASTIC D33 AMPLITUDE

~2300

.}

INERGY (e
JBL B24-9324

Fig. 1(d). The Laj.oy = S31, P31, P33, and Dsg partial-wave amplitudes for 7NV elastic scattering. The upper plot for each
amplitude is from HOEHLER 79 and the lower one is from CUTKOSKY 80. In the Argand plots, the ticks are at integral
multiples of 50 MeV, and the established resonances are shown at their nominal positions. The real and imaginary parts
of the amplitudes as functions of energy are shown projected in alignment with the Argand plots (in the projections of
the CUTKOSKY 80 amplitudes, the “data points” are results of energy-independent fits, and the curves are from an

energy-dependent fit to join them).



MORE THAN 50 YEARS
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HOW WE WORK
(mostly how Ron Workman and I work)

Two people independently scan about 20 journals for articles that
need to be looked at for the next update of the Review.

Relevant subsets of the total list are sent out to the overseers and
encoders. For example, I oversee the ground-state D mesons, and all
the baryons except for those with a b quark. So I work with several
encoders. Ron Workman has been the encoder for N*s for many years.
Before him, it was Mark Manley.

Ron reads the papers and sends me brief notes on them, and encod-
ings of those with relevant data. I read Ron’s notes and look at the
papers, especially those with data to be added to the Particle Listings.
Sometimes we discuss a bit.

What papers get encoded?! Only those papers that influence
our estimates of values of N* parameters!

There are lots of interesting and valuable papers that do not tell us

we can narrow, say, the range of our estimate of the width of the
N(1700).

All new encodings are entered into the database by the chief editor,
Piotr Zyla (a physicist). After entry and checking, requests go out to
one person per paper for verification. I see to corrections, conflicts,
etc.
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ISSUES & PROBLEMS

DEPENDENT ANALYSES:

What values should we give for N* masses, widths, branching frac-
tions, etc? For D mesons, I get completely independent measurements
of branching fractions from CLEO (Cornell), BABAR (Stanford), and
Belle (KEK, Japan). These measurements come with both statistical
and systematic errors, and are perfect for averages and fits. Nothing
like this happens with N*s. The global analyses use heavily overlap-
ping data sets. The lesser analyses often start from the results from
the global fits. In most cases, all we can do is eye-ball a reasonable
range for a mass, a width, a branching fraction.

ISOLATION:

There is little attention from the wider high-energy physics commu-
nity. The situation is like a decades-long war: The battlefront is now
a thousand miles away; this N* back area is not nearly pacified, but
nearly all attention is elsewhere. (Maybe this doesn’t matter: all large
branches of science are splintered into many subcultures.)

NOT TO MENTION:
More and better data are needed.

NOTATION:
Eberhard Klempt favors a change of notation:

A(1232) Psz — Agp+ (1232) .

Variations: A(1232)3/2%; A(1232, 3/2%). A change would be fine.
But perhaps we ought to think twice before changing a long-used
notation.
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THREE WAYS TO GO

CONSERVATIVE:

Keep going more or less the way we are now. I probably favor this
option, but perhaps the community does not. I should say that the
Particle Data Group is never going to go beyond its “name, rank, and
serial number” treatment of the resonances.

LIBERAL:

Form an outside “Partial Wave Averaging Group (PWAG),” to pro-
vide best N* numbers for the Review—such as those estimated best
ranges of masses, widths, etc. There is an outside “Heavy Flavor Av-
eraging Group (HFAG)” that does special topics, such as mixing and
C'P violation, in charm and (especially) bottom physics. We use some
of its numbers directly.

The PWAG would be independent of the Particle Data Group (i.e.,
its problems wouldn’t be our problems). Possible issues are reliability
(e.g., being on time), partisanship.

RADICAL:

Break off the compilation of N* parameters from the Review. Make
a separate publication, linked to the Review. In the process, enlarge
and specialize the coverage of subjects of particular interest and value
to the N* community.
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