

Chiral perturbation theory with explicit spin-3/2 DOF

Outline

- Introduction
- Heavy Baryon ChEFT with explicit $\Delta(1232)$
 - πN scattering, nuclear forces
- Beyond the Heavy Baryon approach
 - V²CS & spin-dependent polarizabilities of the nucleon
- Summary and outlook

1. QCD $\mathcal{L}_{QCD} = -\frac{1}{4}G_{\mu\nu}G^{\mu\nu} + \bar{q}(i\not\!\!D - \mathcal{M})q$

2. Effective Lagrangian for hadronic DOF (π , N, ...)

Most general form (infinitely many terms), restricted only by symmetries, approximate spontaneously-broken chiral symmetry

1. QCD $\mathcal{L}_{QCD} = -\frac{1}{4}G_{\mu\nu}G^{\mu\nu} + \bar{q}(i\not\!\!D - \mathcal{M})q$

2. Effective Lagrangian for hadronic DOF (π , N, ...)

Most general form (infinitely many terms), restricted only by symmetries, approximate spontaneously-broken chiral symmetry

1. QCD $\mathcal{L}_{QCD} = -\frac{1}{4}G_{\mu\nu}G^{\mu\nu} + \bar{q}(i\not\!\!D - \mathcal{M})q$

2. Effective Lagrangian for hadronic DOF (π , N, ...)

Most general form (infinitely many terms), restricted only by symmetries, approximate spontaneously-broken chiral symmetry

3. Scattering amplitude/observables

Perturb. expansion in powers of soft scales over the χ symmetry breaking scale $Q \in (p_i/\Lambda_{\chi}, M_{\pi}/\Lambda_{\chi})$

At each order only a finite number of LECs to be determined from the data

1. QCD $\mathcal{L}_{QCD} = -\frac{1}{4}G_{\mu\nu}G^{\mu\nu} + \bar{q}(i\not\!\!D - \mathcal{M})q$

2. Effective Lagrangian for hadronic DOF (π , N, ...)

Most general form (infinitely many terms), restricted only by symmetries, approximate spontaneously-broken chiral symmetry

3. Scattering amplitude/observables

Perturb. expansion in powers of soft scales over the χ symmetry breaking scale $\ Q \in (p_i/\Lambda_{\chi}, \ M_{\pi}/\Lambda_{\chi})$

At each order only a finite number of LECs to be determined from the data

4. Heavy baryon expansion

Special care needed to ensure that the nucleon mass does not spoil the power counting

$$\delta m_N = -\frac{3g_A^2 m_N^3}{(4\pi F_\pi)^2} \left(16\pi^2 L(\mu) + \frac{1}{2}\ln\frac{m_N^2}{\mu^2}\right) + \mathcal{O}(d-4)$$

HB approach: (covariant) nonrelativistic expansion of the Lagrangian

ChPT: beyond heavy baryon

The imaginary part of the triangle diagram is proportional to

arctan x with
$$x = \frac{\sqrt{(t - 4M_{\pi}^2)(4m_N^2 - t)}}{t - 2M_{\pi}^2}$$

Near threshold, formally: $x = O(m_N/M_{\pi}) \implies$ the HB approach corresponds to the expansion:

$$\arctan x = \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^2} + \dots$$

which converges for |x| > 1. This condition is violated for $|t - 4M_{\pi}^2| \le M_{\pi}^4/m_N^2$...

ChPT: beyond heavy baryon

The imaginary part of the triangle diagram is proportional to

arctan x with
$$x = \frac{\sqrt{(t - 4M_{\pi}^2)(4m_N^2 - t)}}{t - 2M_{\pi}^2}$$

Near threshold, formally: $x = O(m_N/M_{\pi}) \implies$ the HB approach corresponds to the expansion:

$$\arctan x = \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^2} + \dots$$

which converges for |x| > 1. This condition is violated for $|t - 4M_{\pi}^2| \le M_{\pi}^4/m_N^2$...

Solutions (extraction of the soft part of the amplitude):

Infrared regularization: expand the integrand, evaluate the integrals using DR and resum... Ellis & Tang; Becher & Leutwyler

Extended on-mass-shell renormalization: covariant approach + DR + properly chosen subtraction to get rid of hard pieces. Fuchs, Gegelia, Japaridze, Scherer

Inclusion of the spin-3/2 DOF

Why to include $\Delta(1232)$ as an explicit DOF?

- \odot Low excitation energy: $\Delta \equiv m_\Delta m_N = 293 \; {
 m MeV} \sim 2 M_\pi$
- Strong coupling to the pion-nucleon system
- In standard ChPT, effects of the Δ are included implicitly (through LECs)
 - \implies large values of the (Δ -saturated) LECs may spoil convergence

 \implies explicit treatment in SSE: $\Delta \sim \mathcal{O}(M_{\pi})$ Hemmert, Holstein, Kambor

Expansion parameter:
$$\epsilon \in \left(\frac{M_{\pi}}{\Lambda_{\chi}}, \frac{p_i}{\Lambda_{\chi}}, \frac{\Delta}{\Lambda_{\chi}}\right)$$

Price to pay: more LECs, calculations considerably more involved...

Inclusion of the spin-3/2 DOF

Why to include $\Delta(1232)$ as an explicit DOF?

- \odot Low excitation energy: $\Delta \equiv m_\Delta m_N = 293 \; {
 m MeV} \sim 2 M_\pi$
- Strong coupling to the pion-nucleon system
- In standard ChPT, effects of the Δ are included implicitly (through LECs)
 - \implies large values of the (Δ -saturated) LECs may spoil convergence

 \implies explicit treatment in SSE: $\Delta \sim \mathcal{O}(M_{\pi})$ Hemmert, Holstein, Kambor

Expansion parameter: $\epsilon \in \left(\frac{M_{\pi}}{\Lambda_{\chi}}, \frac{p_i}{\Lambda_{\chi}}, \frac{\Delta}{\Lambda_{\chi}}\right)$

Price to pay: more LECs, calculations considerably more involved...

Inclusion of spin-3/2 fields (Rarita-Schwinger formalism) in chiral EFT is non-trivial...

- Maintaining the proper number of DOF in the interacting theory, chiral & gauge invariance Pascalutsa; EE, Krebs, Meißner; Wies, Gegelia, Scherer; Shklyar, Lenske
- Off-shell parameters in the effective Lagrangian Ellis, Tang; Pascalutsa; EE, Krebs, Meißner

Heavy baryon Chiral EFT with explicit Δ (1232)

πN scattering: Δ -less vs Δ -full

Tree level: πN scattering at NLO in SSE:		Q^2 , no Δ	Q^2 with Δ	Q^3 no Δ	EM98
	a_{0+}^+	0.41	0.41	0.49	0.41 ± 0.09
ε:	b_{0+}^+ a_{0+}^-	$-4.46 \\ 7.74$	$-4.46 \\ 7.74$	$-5.23 \\ 7.72$	$-4.46 \\ 7.73 \pm 0.06$
	b_{0+}^{-}	3.34	3.34	1.62	1.56
ϵ^2 :	a_{1-}^{-}	-0.05 -2.81	-1.32 -5.30	-1.19 -5.38	-1.19 ± 0.08 -5.46 ± 0.10
	a_{1-}^{-} a_{1+}^{-}	-6.22	-8.45	-8.16	-8.22 ± 0.07
	a_{1+}^+	9.68	12.92	13.66	13.13 ± 0.13

(in units of $10^{-2} M_{\pi}^{n}$); from: Krebs, EE, Meißner, EPJA 32 (07) 127

The LECs c_1 , c_2 , c_3 , c_4 are determined from a fit to S- and P-wave threshold parameters. One finds:

 \bigcirc Q² with \triangle is performing better/worth than Q²/Q³ in the \triangle -less theory

πN scattering: Δ -less vs Δ -full

Similar conclusions from the leading loop analysis: ϵ^3 more accurate than Q³ Fettes, Meißner '98

+ many more diagrams...

from: Fettes, Meißner, Nucl. Phys. A679 (01) 629

Extensions to the Δ -region

The generic assignment $\omega \sim M_{\pi} \sim \Delta$ in the SSE does not account for enhancement of the one-delta-reducible graphs in the delta region (and thus converges only for ω well below Δ). Extension to the Delta-region requires resummation of 1 Δ R graphs.

Ellis, Tang '98; Pascalutsa, Phillips '03; Pascalutsa, Vanderhaeghen '05-'08; Long, van Kolck '10

Given the importance of the Δ in the π N system, one expects implications for nuclear forces as well...

Given the importance of the Δ in the π N system, one expects implications for nuclear forces as well...

Two-nucleon force in EFT with and without Δ

Given the importance of the Δ in the π N system, one expects implications for nuclear forces as well...

Δ -less theory $\widetilde{V}_{S}(r)$ [MeV] ⁷_T(r) [MeV] LO 16 1.2 14 1.2 1.41.6 1.8 r [fm] r [fm] NLO N²LO -60 1.2 1.4 1.6 1.8 r [fm]

Two-nucleon force in EFT with and without Δ

Given the importance of the Δ in the π N system, one expects implications for nuclear forces as well...

Two-nucleon force in EFT with and without Δ Δ -less theory Δ -full theory: additional graphs X +--+ LO Ordonez, Ray & van Kolck.'96, Kaiser, Gerstendorfer & Weise '98 $b_3 + b_8$ $N^2 I O$ Krebs, E.E., Meißner EPJA 32 (2007) 127

Given the importance of the Δ in the π N system, one expects implications for nuclear forces as well...

Two-nucleon force in EFT with and without Δ Δ -less theory Δ -full theory: additional graphs X +--+ LO Ordonez, Ray & van Kolck.'96, Kaiser, Gerstendorfer & Weise '98 $b_3 + b_8$ N²LO Krebs, E.E., Meißner EPJA 32 (2007) 127

2π -exchange up to N²LO

- a much better convergence for the potential when Δ is included explicitly
- clearly visible in NN peripheral waves

V²CS in EFT with explicit Δ : Lorentz-invariant approach

in collaboration with Veronique Bernard, Hermann Krebs & Ulf-G. Meißner

For small photon energy, $\overline{S}_{1,2}$ (elastic contrib. subtracted) can be expanded powers of v²:

$$\bar{S}_1(\nu, Q^2) = \sum_{i=0}^{\infty} \bar{S}_1^{(2i)}(0, Q^2) \nu^{2i}, \qquad \bar{S}_2(\nu, Q^2) = \sum_{i=0}^{\infty} \bar{S}_2^{(2i+1)}(0, Q^2) \nu^{2i+2i}$$

moments of structure functions

Generalized polarizabilities:

$$\gamma_0(Q^2) = \frac{1}{8\pi} \left(\bar{S}_1^{(2)}(0, Q^2) - \frac{Q^2}{m_N} \bar{S}_2^{(3)}(0, Q^2) \right) \qquad \delta_0(Q^2) = \frac{1}{8\pi} \left(\bar{S}_1^{(2)}(0, Q^2) + \frac{1}{m_N} \bar{S}_2^{(1)}(0, Q^2) \right)$$

moments of structure functions

can be measured (using dispersion integrals) and computed in ChPT

Previous calculations within chiral EFT
• HB ChPT up to order Q⁴
Ji, Kao, Osborne, Spitzenberg, Vanderhaeghen, Birse, McGovern, Kumar 4.45 – 5.25 + 2.00 + 0.68 + 0
• Only well-known LECs from
$$\mathcal{L}_{\pi N}^{(2)}$$
 configure
• $\mathcal{L}_{\pi N}^{(2)}$ confi

Donnerstag, 26. Mai 2011 $3 - 0.26 - 0.24 + O(\mu^2) = 2.66$

,3

 h_A

 b_1 b_1 Strong improvement for γ_0 ; insensitivity of δ_0 to the Δ-contributions confirmed

- \bigcirc HB expansion in the presence of Δ seems not to converge even at the photon point
- \bigcirc Consequently, some schemedependence observed (IR vs DR), further study needed...
- Order-ε⁴ calculation needed to draw_efinal conclusions

Summary and outlook

- Explicit treatment of the Δ(1232) in chiral EFT within the SSE improves the description of the pion-nucleon system and nuclear forces.
- Generalized forward spin polarizabilities are calculated up to order ε^3 in the Lorentz-invariant formulation. Δ loop contributions to γ_0 are large and strongly improve the description of the data; δ_0 appears to be less sensitive.

Still to be done (work in progress):

Nuclear forces to order ε⁴; V²CS at order ε⁴ in Lorentz-invariant ChEFT; global analysis of πN data, form factors, π photo-/electroproduction in Baryon ChEFT with explicit Δ

EE, Krebs, Meißner, NPA 806 (08) 65

EE, Krebs, Meißner, NPA 806 (08) 65

EE, Krebs, Meißner, NPA 806 (08) 65

• Δ contributions at N³LO are large!

- Long-range part is parameter free
- Much richer spin/isospin structure compared to the Illinois model
- Complete analysis still to be done Krebs, E.E., in progress

