Excited state meson and baryon spectroscopy from Lattice QCD

Robert Edwards Jefferson Lab

PWA 2011

Collaborators: J. Dudek, B. Joo, D. Richards, S. Wallace Auspices of the Hadron Spectrum Collaboration

Lattice QCD

Goal: resolve highly excited states

$$
N_f = 2 + 1 (u,d + s)
$$

Anisotropic lattices:

 $(a_s)^{-1} \sim 1.6$ GeV, $(a_t)^{-1} \sim 5.6$ GeV

Thomas Jefferson National Accelerator Facility

0810.3588, 0909.0200, 1004.4930

Spectrum from variational method

Two-point correlator

$$
C(t) = \langle 0 | \Phi'(t) \, \Phi(0) | 0 \rangle
$$

$$
C(t) = \sum_{\mathfrak{n}} e^{-E_{\mathfrak{n}}t} \langle 0 | \Phi'(0) | \mathfrak{n} \rangle \langle \mathfrak{n} | \Phi(0) | 0 \rangle
$$

 $Z_i^{\mathfrak{n}}$ $\binom{\mathfrak{n}}{i} \, \equiv \, \left\langle \mathfrak{n} \right| \, \Phi_i \, \left| 0 \right\rangle$

Matrix of correlators

$$
C(t) = \begin{bmatrix} \langle 0|\Phi_1(t)\Phi_1(0)|0\rangle & \langle 0|\Phi_1(t)\Phi_2(0)|0\rangle & \cdots \\ \langle 0|\Phi_2(t)\Phi_1(0)|0\rangle & \langle 0|\Phi_2(t)\Phi_2(0)|0\rangle & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}
$$

Diagonalize: $eigenvalues \rightarrow spectrum$

 $eigenvectors \rightarrow spectral$ "overlaps"

Each state optimal combination of Φ_i

$$
\Omega_{\mathfrak{n}} = v_1^{\mathfrak{n}} \Phi_1 + v_2^{\mathfrak{n}} \Phi_2 + \dots
$$

Benefit: orthogonality for near degenerate states

Operator construction

Baryons : permutations of 3 objects

Permutation group S_3 : 3 representations

- Symmetric: 1-dimensional •e.g., uud+udu+duu • Antisymmetric: 1-dimensional •e.g., uud-udu+duu-… • Mixed: 2-dimensional
	- •e.g., udu duu & 2duu udu uud

Color antisymmetric \rightarrow Require Space [Flavor Spin] symmetric

Classify operators by these permutation symmetries:

• Leads to rich structure

Thomas Jefferson National Accelerator Facility

1104.5152

Orbital angular momentum via derivatives

Couple derivatives onto single-site spinors: Enough D's – build any J,M

$$
\mathcal{O}^{JM} \gets \left(CGC's\right)_{i,j,k} \left[\vec{D}\right]_i \left[\vec{D}\right]_j \left[\Psi\right]_k
$$

Only using symmetries of continuum QCD

 $Operator_S \leftarrow Derivatives$

· Flavor Dirac

¸

 $\mathcal{O}^{JM} \leftarrow (CGC's)_{i,j,k} \left[\vec{D}\right]_i \left[\vec{D}\right]_j$

using symmetries of continuum QCI

Operator_S \leftarrow Derivatives

Il possible **operators** up to 2 derivatiforms like 2 units orbital angular mo Use all possible **operators** up to 2 derivatives (transforms like 2 units orbital angular momentum)

Baryon operator basis

6

Operators are not states

Two-point correlator

$$
C(t) = \langle 0 | \Phi'(t) \, \Phi(0) | 0 \rangle
$$

$$
C(t) = \sum_{\mathfrak{n}} e^{-E_{\mathfrak{n}}t} \langle 0 | \Phi'(0) | \mathfrak{n} \rangle \langle \mathfrak{n} | \Phi(0) | 0 \rangle
$$

Full basis of operators: many operators can create same state

Spectral "overlaps"

$$
\langle \mathfrak{n};\, J^P\mid \Phi_i\mid 0\rangle\ =\ Z_i^{\mathfrak{n}}
$$

States may have subset of allowed symmetries

Spin identified Nucleon & Delta spectrum

Thomas Jefferson National Accelerator Facility

Jefferson Lab

Spin identified Nucleon & Delta spectrum

Thomas Jefferson National Accelerator Facility

Jefferson Lab

Spin identified Nucleon & Delta spectrum

Thomas Jefferson National Accelerator Facility

Jefferson Lab

Nucleon J-

N=2 J⁺ Nucleon & Delta spectrum

Thomas Jefferson National Accelerator Facility

Jefferson Lab

Roper??

Spectrum of finite volume field theory

Missing states: "continuum" of multi-particle scattering states

scattering phase shift

 $\Delta E(L) \leftrightarrow \delta(E)$: Lüscher method

The idea: 1 dim quantum mechanics

Two spin-less bosons: $\psi(x,y) = f(x-y)$

$$
\left[-\frac{1}{m}\frac{d^2}{dz^2} + V(z)\right]f(z) = E f(z)
$$

Solutions

 $f(z) \to \cos[k|z| + \delta(k)]$ $E = k^2/m$

Quantization condition when $-L/2 < z < L/2$

 $kL + 2\delta(k) = 0 \mod 2\pi$

Same physics in 4 dim version, but messier Provable in a QFT

Finite volume scattering

Lüscher method -scattering in a periodic cubic box (length **L**) -finite volume energy levels **E(L)** ! **δ(E)**

I=1 $\pi\pi$: the "p"

Form Factors

Hadronic Decays

Jefferson Lab

Isoscalar & isovector meson spectrum

Prospects

- Strong effort in excited state spectroscopy
	- New operator & correlator constructions \rightarrow high lying states
- Results for baryon excited state spectrum:
	- No "freezing" of degrees of freedom nor parity doubling
	- Broadly consistent with non-relativistic quark model
	- Add multi-particles \rightarrow baryon spectrum becomes denser
- Short-term plans: resonance determination!
	- Lighter pion masses (230MeV available)
	- Extract couplings in multi-channel systems
	- This includes π , η , K in final states
- Form-factors:
	- Use previous resonance parameters: initially, $Q^2 \sim few GeV^2$

Backup slides

• The end

22

Baryon Spectrum

"Missing resonance problem"

- What are collective modes?
- What is the structure of the states?

Thomas Jefferson National Accelerator Facility

 $|q^3\rangle$

Finite volume scattering: Lϋscher method

The interpretation

The interpretation

Phase Shifts demonstration: I=2 $\pi\pi$

Extract $\delta_0(E)$ at discrete E

No discernible pion mass dependence

1011.6352 (PRD)

 $\pi\pi$ isospin=2

Phase Shifts: demonstration

(E)

 $I=2 \pi \pi$

1011.6352

