# Combined analysis of pion-induced reactions in a dynamical coupled-channels approach

#### M. Döring

H. Haberzettl, J. Haidenbauer, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, K. Nakayama, D. Rönchen, Forschungszentrum Jülich, Universität Bonn, University of Georgia, GWU



## The Jülich model of pion-nucleon interaction

#### Motivation

- Coupled channels  $\pi N$ ,  $\eta N$ , KY; effective  $\pi \pi N$  channels  $\sigma N$ ,  $\rho N$ ,  $\pi \Delta$ .
- Chiral Lagrangian of Wess and Zumino [PR163 (1967), Phys.Rept. 161 (1988)].
- Baryonic resonances up to J = 7/2 with derivative couplings.
- General requirements of the S-matrix.
  - Crossed (u-channel) contributions  $\rightarrow$  sub-threshold cuts.
  - Dispersive treatment of t-channel exchanges ( $\sigma$ ,  $\rho$  exchange from  $N\bar{N} \rightarrow \pi\pi$ ).
  - Full analyticity, also of  $\pi\pi N$  intermediate states  $\rightarrow$  additional branch points in complex plane.
  - 2-body unitarity, some requirements of 3-body unitarity (but not full).

#### Talks by S. Krewald, F. Huang

- Analytic structure and the "background", The reaction  $\pi^+ p \to K^+ \Sigma^+$ .
- Photoproduction.

The scattering equation Chiral constraints & Analyticity

## Scattering equation in the JLS basis

$$\langle L'S'k'|T^{IJ}_{\mu\nu}|LSk\rangle = \langle L'S'k'|V^{IJ}_{\mu\nu}|LSk\rangle$$

$$+ \sum_{\gamma,L''S''} \int_{0}^{\infty} k''^2 dk'' \langle L'S'k'|V^{IJ}_{\mu\gamma}|L''S''k''\rangle \frac{1}{Z - E_{\gamma}(k'') + i\epsilon} \langle L''S''k''|T^{IJ}_{\gamma\nu}|LSk\rangle$$





The scattering equation Chiral constraints & Analyticity

## Scattering equation in the JLS basis

$$\langle L'S'k'|T^{IJ}_{\mu\nu}|LSk\rangle = \langle L'S'k'|V^{IJ}_{\mu\nu}|LSk\rangle$$

$$+ \sum_{\gamma,L''S''} \int_{0}^{\infty} k''^{2} dk'' \langle L'S'k'|V^{IJ}_{\mu\gamma}|L''S''k''\rangle \frac{1}{Z - E_{\gamma}(k'') + i\epsilon} \langle L''S''k''|T^{IJ}_{\gamma\nu}|LSk\rangle$$

#### Features

- Hadron exchange: provides the relevant dynamics.
- Full analyticity (dispersive parts).
- All partial waves are linked (t-, u-channel processes)
- Channels linked (SU(3) symmetry).
- Minimal resonance content required.
- Dynamical generation of resonances is possible, but not easy (strong constraints).



The scattering equation Chiral constraints & Analyticity

#### Partial waves in $\pi N \rightarrow \pi N$ (Solution 2002)

"Data": GWU/SAID, PRC74 (2006)



The scattering equation Chiral constraints & Analyticity

#### Example of chiral constraints: $\pi\pi$ scattering



PWA 2011 Washington DC, May 23-27, 2011

#### Implementation of the chiral $\sigma$



The scattering equation Chiral constraints & Analyticity

#### Effects of the $\chi$ unitary $\sigma$ meson in the P11 $\pi N$ amplitude



- Dynamical generation of Roper does not depend on details of the model
- Chiral σ provides better description.



The scattering equation Chiral constraints & Analyticity

## Structure of the P11 partial wave (Roper)

#### analytic continuation



- $\sigma N$  interaction strongly attractive  $\rightarrow$  dynamical generation of the Roper.
- Roper pole  $+ \pi \Delta$  branch point  $\rightarrow$  non-standard resonance shape.

Where is the 3\* N(1710)?
 [S. Ceci, M.D. et al, arXiv 1104.3490]



Fit of a model without  $\rho N$  branch point (CMB type) [solid lines] to the Jülich amplitude [dashed lines]

• CMB fit to JM has pole at 1698 - 130 *i* MeV, simulates missing branch point.

Branch points in  $\gamma n 
ightarrow \eta n$ 

Inclusion of full analytic structure important to avoid false pole signals.



The scattering equation Chiral constraints & Analyticity

#### Poles and residues [M.D., C. Hanhart, F. Huang, S. Krewald and U.-G. Meißner, NPA 829 (2009), PLB 681 (2009)]

|                                                                                                                     |                   |                      |                    |                  |                         | Re z <sub>0</sub> | -21m z <sub>0</sub> | R            | $\theta$ [deg]   |
|---------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|--------------------|------------------|-------------------------|-------------------|---------------------|--------------|------------------|
|                                                                                                                     |                   |                      |                    |                  |                         | [MeV]             | [MeV]               | [MeV]        | [ <sup>0</sup> ] |
|                                                                                                                     | /                 |                      |                    |                  | $N^*(1535) S_{11}$      | 1519              | 129                 | 31           | -3               |
|                                                                                                                     |                   |                      |                    |                  | ARN                     | 1502              | 95                  | 16           | -16              |
| _                                                                                                                   |                   |                      |                    |                  | HOE                     | 1487              |                     |              |                  |
| 5                                                                                                                   |                   |                      |                    |                  | CUT                     | $1510 \pm 50$     | $260 \pm 80$        | $120 \pm 40$ | $+15\pm45$       |
|                                                                                                                     | 1H4               |                      |                    |                  | $N^*(1650) S_{11}$      | 1669              | 136                 | 54           | -44              |
| $\langle \rangle$                                                                                                   |                   | XTN 1                | ~ /                |                  | ARN                     | 1648              | 80                  | 14           | -69              |
| _ \ ~                                                                                                               | REPAIL I          |                      |                    |                  | HOE                     | 1670              | 163                 | 39           | -37              |
|                                                                                                                     | XIHU I            | N CN N               | 10                 | 00               | CUT                     | $1640 \pm 20$     | $150 \pm 30$        | $60 \pm 10$  | $-75 \pm 25$     |
|                                                                                                                     |                   | XXX                  | $\sim$ $^{10}$     | JU -             | $N^*(1720) P_{13}$      | 1663              | 212                 | 14           | -82              |
| 100                                                                                                                 |                   | ( XXX                | 1700               |                  | ARN                     | 1666              | 355                 | 25           | -94              |
| 100                                                                                                                 | $\times$          | IX X                 |                    |                  | HOE                     | 1686              | 187                 | 15           |                  |
| Im - (Mo)/                                                                                                          |                   | XXIII                | 1600<br>Do - (Mo)/ | ,                | CUT                     | $1680 \pm 30$     | $120 \pm 40$        | $8 \pm 12$   | $-160 \pm 30$    |
| In z livev                                                                                                          |                   |                      | Rez (iviev         | J —              | $\Delta(1232) P_{33}$   | 1218              | 90                  | 47           | -37              |
|                                                                                                                     | 50                | 1500                 |                    |                  | ARN                     | 1211              | 99                  | 52           | -47              |
|                                                                                                                     | X                 |                      |                    |                  | HOE                     | 1209              | 100                 | 50           | -48              |
|                                                                                                                     |                   | 1100                 |                    | _                | CUT                     | $1210 \pm 1$      | $100 \pm 2$         | $53 \pm 2$   | $-47 \pm 1$      |
|                                                                                                                     |                   | 1400                 |                    |                  | $\Delta^*(1620) S_{31}$ | 1593              | 72                  | 12           | -108             |
|                                                                                                                     | _                 |                      |                    |                  | ARN                     | 1595              | 135                 | 15           | -92              |
|                                                                                                                     | Re z <sub>0</sub> | -2 lm z <sub>0</sub> | R                  | $\theta$ [deg]   | HOE                     | 1608              | 116                 | 19           | -95              |
|                                                                                                                     | [MeV]             | [MeV]                | [MeV]              | [ <sup>0</sup> ] | CUT                     | $1600 \pm 15$     | $120 \pm 20$        | $15 \pm 2$   | $-110 \pm 20$    |
| $N^*(1440) P_{11}$                                                                                                  | 1387              | 147                  | 48                 | -64              | $\Delta^*(1700) D_{33}$ | 1637              | 236                 | 16           | -38              |
| ARN                                                                                                                 | 1359              | 162                  | 38                 | -98              | ARN                     | 1632              | 253                 | 18           | -40              |
| HOE                                                                                                                 | 1385              | 164                  | 40                 |                  | HOE                     | 1651              | 159                 | 10           |                  |
| CUT                                                                                                                 | $1375 \pm 30$     | $180 \pm 40$         | $52 \pm 5$         | $-100 \pm 35$    | CUT                     | $1675 \pm 25$     | $220 \pm 40$        | $13 \pm 3$   | $-20\pm 25$      |
| $N^*$ (1520) $D_{13}$                                                                                               | 1505              | 95                   | 32                 | -18              | $\Delta^*(1910) P_{31}$ | 1840              | 221                 | 12           | -153             |
| ARN                                                                                                                 | 1515              | 113                  | 38                 | -5               | ARN                     | 1771              | 479                 | 45           | +172             |
| HOE                                                                                                                 | 1510              | 120                  | 32                 | -8               | HOE                     | 1874              | 283                 | 38           |                  |
| CUT                                                                                                                 | $1510 \pm 5$      | $114 \pm 10$         | $35 \pm 2$         | $-12\pm 5$       | CUT                     | $1880 \pm 30$     | $200 \pm 40$        | $20 \pm 4$   | $-90 \pm 30$     |
| [ARN]: Arndt et al., PRC 74 (2006), [HOE]: Höhler, $\pi N$ Newsl. 9 (1993), [CUT]: Cutkowski et al., PRD 20 (1979). |                   |                      |                    |                  |                         |                   |                     |              |                  |

Residues to  $\eta N$ ,  $\sigma N$ ,  $\rho N$ ,  $\pi \Delta$ . Zeros. Branching ratios to  $\pi N$ ,  $\eta N$ .



 $\pi N \rightarrow K\Lambda, K\Sigma, \cdots$ Analyzing lattice data

Parallelization[Project JIKP07 on JUROPA/FZ Jülich, 384,000 CPU hours granted]Fixing free parameters from s-channel "pole" processes [fast!] and t-, u- processes [ $\sim 100 \times slower$ ]

#### **Requirements:**

1) Maintain speed advantage of (x 100) of calculation of  $T^{P}$  from  $T^{NP}$  (T=T<sup>NP</sup>+T<sup>P</sup>)

- > 2 nested Minuit runs: full fit of  $T^P$  [~40 parms.] for every step in  $T^{NP}$ 

- > requires separated memory spaces/ mpi parallelization on Juropa/FZ Julich

2) Scaling with # processes

3) Adding large amounts of data to  $\chi^2$  without increase of execution time



 $\pi N \rightarrow K\Lambda, K\Sigma, \cdots$ Analyzing lattice data

#### 









Data upper: Candlin 1983, NPB 226 (1983), lower: GWU/SAID, PRC74 (2006)



Linking partial waves and different reactions puts more constraints on resonance content



PWA 2011 Washington DC, May 23-27, 2011

Jülich analysis

 $\pi N \rightarrow K\Lambda, K\Sigma, \cdot \cdot$ Analyzing lattice data

#### Pole Structure of the Amplitudes extracted from analytic continuation



PWA 2011 Washington DC, May 23-27, 2011

Jülich analysis

# Comparison of poles (extracted from $\pi N \to \pi N \& \pi^+ \to K^+ \Sigma^+$ )

| Data: $\pi N + K^{\circ}$ Analysis:     Jülich       Type:     DCM       Pole/BW:     P | $\pi N + K^+$                        | $\Sigma^+ (+\cdots)$ | $\pi N$           |                |                |                  |                 | $K^+\Sigma^+$              | ππΝ              | Quark Models |              |
|-----------------------------------------------------------------------------------------|--------------------------------------|----------------------|-------------------|----------------|----------------|------------------|-----------------|----------------------------|------------------|--------------|--------------|
|                                                                                         | is: Jülich Giel<br>DCM KM<br>W: P BW | Gießen<br>KM<br>BW   | GWU<br>KM/DA<br>P | KH<br>DA<br>SP | CMB<br>DA<br>P | EBAC<br>DCM<br>P | DMT<br>DCM<br>P | Cdl Mnly<br>IA KM<br>BW BW | Mnly<br>KM<br>BW | LMP, A<br>   | CI<br>-<br>- |
| $\Delta(1232)P_{33}$<br>$3/2^+ ****$                                                    | 1216<br>96                           | 1228(1)<br>106(1)    | 1211<br>99        | 1209<br>100    | 1210<br>100    | 1211<br>100      | 1212<br>98      | -                          | 1232<br>118      | 1261         | 1230         |
| $\Delta(1600)P_{33}$<br>$3/2^+ ***$                                                     | 1455 <sup>(a)</sup><br>694           | 1667(1)<br>397(10)   | 1457<br>400       | 1550<br>-      | 1550<br>200    | -                | 1544<br>190     | -                          | 1706<br>430      | 1810         | 1795         |
| $\Delta(1620)S_{31}$<br>$1/2^{-} ****$                                                  | 1599<br>62                           | 1612(2)<br>202(7)    | 1595<br>135       | 1608<br>116    | 1600<br>120    | 1563<br>190      | 1589<br>148     | -                          | 1672<br>154      | 1654<br>_    | 1555         |
| $\Delta(1700)D_{33}$<br>$3/2^{-} ****$                                                  | 1644<br>252                          | 1678(1)<br>606(15)   | 1632<br>253       | 1651<br>159    | 1675<br>220    | 1604<br>212      | 1604<br>142     | Ξ                          | 1762<br>599      | 1628         | 1620<br>-    |
| $K^{+}\Sigma^{+}(1688)$                                                                 |                                      |                      |                   |                |                |                  |                 |                            |                  |              |              |
| $\Delta(1750)P_{31}$<br>1/2 <sup>+</sup> *                                              | 1668 <sup>(a)</sup><br>892           | 1712(1)<br>643(17)   | 1771<br>479       | -              | -              | -                | -               | -                          | 1744<br>299      | 1866         | -            |
| $\Delta(1900)S_{31}$<br>$1/2^{-} **$                                                    | -                                    | 1984<br>237          | -                 | 1780<br>170    | 1870<br>180    | -                | 1774<br>72      | -                          | 1920<br>263      | 2100         | 2035         |
| $\Delta(1905)F_{35}$<br>5/2 <sup>+</sup> ****                                           | 1764<br>218                          | 1845(15)<br>426(26)  | 1819<br>247       | 1829<br>303    | 1830<br>280    | 1738<br>220      | 1760<br>200     | 1960<br>270                | 1881<br>327      | 1897         | 1910<br>-    |
| $\Delta(1910)P_{31}$<br>$1/2^+ ****$                                                    | 1721<br>323                          | 1975<br>676          | 1771<br>479       | 1874<br>283    | 1880<br>200    | -                | 1900<br>174     | -                          | 1882<br>239      | 1906         | 1875         |
| $\Delta(1920)P_{33}$<br>$3/2^+ ***$                                                     | 1884<br>229                          | 2057(1)<br>525(32)   |                   | 1900           | 1900<br>300    | -                | -<br>300        | 1840<br>200                | 2014<br>152      | 1871<br>-    | 1915         |
| $\Delta(1930)D_{35}$<br>5/2 <sup>-</sup> ***                                            | 1865<br>147                          |                      | 2001<br>387       | 1850<br>180    | 1890<br>260    | -                | 1989<br>280     | -                          | 1956<br>526      | 2179         | 2155         |
| $\Delta(1940)D_{33}$<br>$3/2^-*$                                                        | =                                    | =                    | -                 | =              | -              | -                | =               | -                          | 2057<br>460      | 2089         | 2080         |
| $\Delta(1950)F_{37}$<br>7/2 <sup>+</sup> ****                                           | 1873<br>206                          | -                    | 1876<br>227       | 1878<br>230    | 1890<br>260    | 1858<br>200      | 1858<br>208     | 1925<br>330                | 1945<br>300      | 1956         | 1940<br>-    |



 $\pi N \rightarrow K\Lambda, K\Sigma, \cdots$ Analyzing lattice data

#### Example of other final states [preliminary, no N(1710)P11 needed so far]

π<sup>-</sup>p --> K<sup>0</sup>Λ



PWA 2011 Washington DC, May 23-27, 2011



2405 MeV

Saxon 80, NPB 162, 522

Ē





120

0

> 0 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5

z = 2208 MeV

2316 MeV

600000n

cosθ

100

 $\pi N \rightarrow K\Lambda, K\Sigma, \cdot \cdot \cdot$ Analyzing lattice data

The power of SU(3) Fixing *u*-, *t*-channel exchanges from  $\pi N \to \pi N, K^+ \Sigma^+, K^0 \Lambda, \eta N$ 





 $\pi N \rightarrow K\Lambda, K\Sigma, \cdot \cdot \cdot$ Analyzing lattice data

#### First results other KY channels: differential cross section







 $\pi N \rightarrow K\Lambda, K\Sigma, \cdots$ Analyzing lattice data

## First results other *KY* channels: Polarization





 $\begin{array}{c} \pi^- p \to K^+ \Sigma^- \colon \\ & \text{no data} \end{array}$ 

- HADES proposal: Measurement of  $\pi^-$  induced reactions HADES Symp., May 13, 2011, Seillac, France.
- c.m. energies from 1.7 to 2 GeV.
- Additional motivation most welcome!



 The analytic structure of the scattering amplitude
  $\pi N \rightarrow K\Lambda, K\Sigma, \cdots$  

 Coupled channel analysis of different final states
 Analyzing lattice data

Dynamical coupled channels models in a box Discretization & twisted BC [M.D., J. Haidenbauer, A. Rusetsky, U.-G. Meißner, E. Oset, in preparation]

- Variation of box size  $L \rightarrow$  reconstruction of phase shifts (Lüscher)
- Prediction of lattice levels & including coming lattice-data in analysis.
- Examples:  $\Lambda(1405)$ ,  $\sigma(600)$ ,  $f_0(980)$  on the lattice.



 $\pi N \rightarrow K\Lambda, K\Sigma, \cdots$ Analyzing lattice data

# Multi-channel dynamics

Error propagation from pseudo lattice-data [M.D., U.-G. Meißner, E. Oset, A. Rusetsky, in prep.]

- Coupled channels  $\pi\pi$ ,  $\bar{K}K$ : three unknwons
  - $V(\pi\pi \to \pi\pi)$
  - $V(\pi\pi \to \bar{K}K)$
  - $V(\bar{K}K \to \bar{K}K)$
- How good is the reconstructed phase shift using different lattice data?
- Use pseudo-data generated from hadronic model.
- Hadronic input can reduce the error.



- red: twisted boundary conditions
- green: Asymmetric boxes
- brown: different levels



#### Conclusions

- $\bullet$  Meson and baryon exchange: relevant degrees of freedom in the  $2^{\rm nd}$  and  $3^{\rm rd}$  resonance region.
- Exchange provides constraints, because all partial waves & reactions are linked  $\rightarrow$  minimal resonance content.
- Lagrangian based, field theoretical description of meson-baryon interaction. Unitarity and analyticity are ensured.
- Constructed to fulfill general requirements of the *S*-matrix (dispersive *t*-, *u*-channel [crossing]), branch points in complex plane, · · ·
- ⇒ precise determination of model independent resonance parameters (poles).
- Parallelization & program structure: Inclusion of large amounts of data possible.
- Dynamical coupled channel models on a momentum lattice: predict levels, error propagation, analyse coming lattice data.

## Chiral unitary approach to $\pi\pi$ scattering



PWA 2011 Washington DC, May 23-27, 2011

Jülich analysis

#### Implementation of the chiral $\sigma$

◀ back



Jülich analysis

## Analytic continuation via Contour deformation

...enables access to all Riemann sheets

$$\Pi_{\sigma}(z) = \int_{0}^{\infty} q^{2} dq \, \frac{(v^{\sigma \pi \pi}(q))^{2}}{z - E_{1} - E_{2} + i\epsilon}$$

$$z - E_{1} - E_{2} = 0 \Leftrightarrow q = q_{c.m.}$$

$$q_{c.m.} = \frac{1}{2z} \sqrt{[z^{2} - (m_{1} - m_{2})^{2}][z^{2} - (m_{1} + m_{2})^{2}]}$$





- Plot q<sub>c.m.</sub>(z) in the q plane of integration (X: Pole positions).
- $\begin{bmatrix} -\bullet \\ -\bullet \end{bmatrix}$  case (a), Im z > 0: straight integration from q = 0 to  $q = \infty$ .
- case (b), Im z = 0: Pole is on real q axis.
- case (c), Im z < 0: Deformation gives analytic continuation.
- Special case: Pole at q = 0
   ⇔ branch point at

 $z = m_1 + m_2$  (= threshold).



#### Propagator of effective $\pi\pi N$ channels $\sigma N$ , $\rho N$ , $\pi\Delta$





#### Effective $\pi\pi N$ channels: Analytic structure

◀ back



- The cut along Im z = 0 is induced by the cut of the self energy of the unstable particle.
- The poles of the unstable particle ( $\sigma$ ) induce branch points in the  $\sigma N$  propagator at

$$z_{b_2} = m_N + z_0, \ z_{b'_2} = m_N + z_0^*$$

PWA 2011 Washington DC, May 23-27, 2011

Three branch points and four sheets for each of the  $\sigma N$ ,  $\rho N$ , and  $\pi \Delta$  propagators.





#### Effective $\pi\pi N$ channels: Analytic structure

◀ back



- The cut along Im z = 0 is induced by the cut of the self energy of the unstable particle.
- The poles of the unstable particle ( $\sigma$ ) induce branch points in the  $\sigma N$  propagator at

$$z_{b_2} = m_N + z_0, \ z_{b'_2} = m_N + z_0^*$$

PWA 2011 Washington DC, May 23-27, 2011

Three branch points and four sheets for each of the  $\sigma N$ ,  $\rho N$ , and  $\pi \Delta$  propagators.





#### Branch points in coupled channels $(\gamma N \rightarrow \eta N)$ [M.D., K. Nakayama, EPJA43 (2010), PLB683 (2010)]





[Data: I. Jaegle et al., CBELSA/TAPS, PRL 100 (2008)]

- Intermediate states in photon loops, Q = 0, 1:
- $\pi^- p$ ,  $\pi^0 n$ ,  $\eta n$ ,  $K^0 \Lambda$ ,  $K^+ \Sigma^-$ ,  $K^0 \Sigma^0$
- $\pi^0 p$ ,  $\pi^+ n$ ,  $\eta p$ ,  $K^+ \Lambda$ ,  $K^+ \Sigma^0$ ,  $K^0 \Sigma^+$



- Pronounced cusp from dispersive ("real") part of the loop.
- Peak in σ<sub>n</sub>/σ<sub>p</sub>: Direkt consequence of Weinberg-Tomozawa driving term from LO χ Lagrangian.



#### Branch points in coupled channels ( $\gamma N \rightarrow \eta N$ ) [M.D., K. Nakayama, EPJA43 (2010), PLB683 (2010)]





[Data: I. Jaegle et al., CBELSA/TAPS, PRL 100 (2008)]

• Intermediate states in photon loops, Q = 0, 1: •  $\pi^- p, \pi^0 n, \eta n, K^0 \Lambda, K^+ \Sigma^-, K^0 \Sigma^0$ •  $\pi^0 p, \pi^+ n, \eta p, K^+ \Lambda, K^+ \Sigma^0, K^0 \Sigma^+$ •  $\gamma$ Im G  $\pi(\eta)$ 

 Pronounced cusp from dispersive ("real") part of the loop.

Re G

 Peak in σ<sub>n</sub>/σ<sub>p</sub>: Direkt consequence of Weinberg-Tomozawa driving term from LO χ Lagrangian.

Energy →

N



N

# Couplings " $g = \sqrt{a_{-1}}$ " to other channels

◀ back

|                           | Νπ                           | $N\rho^{(1)} (S = 1/2)$                             | $N\rho^{(2)} \ (S=3/2)$      | $N\rho^{(3)} (S =$     |
|---------------------------|------------------------------|-----------------------------------------------------|------------------------------|------------------------|
| $N^*(1535) S_{11}$        | $S_{11}$ 8.1 + 0.5 <i>i</i>  | $S_{11}$ 2.2 - 5.4 <i>i</i>                         |                              | $D_{11} = 0.5$         |
| $N^*(1650) S_{11}$        | $S_{11}$ 8.6 - 2.8 <i>i</i>  | $S_{11} = 0.9 - 9.1i$                               | _                            | $D_{11} = 0.3$         |
| $N^*(1440) P_{11}$        | $P_{11} \ 11.2 - 5.0i$       | $P_{11} - 1.3 + 3.2i$                               | $P_{11}$ 3.6 – 2.6 <i>i</i>  | _                      |
| $\Delta^{*}(1620) S_{31}$ | $S_{31}$ 2.9 - 3.7 <i>i</i>  | $S_{31} = 0.0 - 0.0i$                               | _                            | $D_{31} = 0.0$         |
| $\Delta^{*}(1910) P_{31}$ | $P_{31}$ 1.2 - 3.5 <i>i</i>  | $P_{31} = 0.2 - 0.4i$                               | $P_{31} = -0.2 - 0.4i$       | _                      |
| $N^*(1720) P_{13}$        | $P_{13}$ 3.7 - 2.6 <i>i</i>  | $P_{13} = 0.1 + 0.8i$                               | $P_{13} - 1.1 + 0.1i$        | $F_{13} = 0.1$         |
| $N^*(1520) D_{13}$        | $D_{13}$ 8.4 - 0.8 <i>i</i>  | $D_{13} - 0.6 + 0.7i$                               | $D_{13}$ 0.9 - 2.0 <i>i</i>  | $S_{13} - 2.5$ -       |
| $\Delta(1232) P_{33}$     | $P_{33} 17.9 - 3.2i$         | $P_{33} - 1.3 - 0.8i$                               | $P_{33} = -0.9 - 3.0i$       | $F_{33} = 0.0$         |
| $\Delta^*(1700) D_{33}$   | $D_{33}$ 4.9 - 1.0 <i>i</i>  | $D_{33} - 0.2 + 0.9i$                               | $D_{33} - 0.4 - 0.4i$        | $S_{33} = -0.1 = -0.1$ |
|                           | $N\eta$                      | $\Delta \pi^{(1)}$                                  | $\Delta \pi^{(2)}$           | $N\sigma$              |
| $N^*(1535) S_{11}$        | $S_{11}$ 11.9 - 2.3 <i>i</i> | _                                                   | $D_{11}$ -5.9 + 4.8 <i>i</i> | $P_{11} - 1.4$         |
| $N^{*}(1650) S_{11}$      | $S_{11} - 3.0 + 0.5i$        | _                                                   | $D_{11}$ 4.3 + 0.4 <i>i</i>  | $P_{11} - 2.1$         |
| $N^*(1440) P_{11}$        | $P_{11} = -0.1 + 0.0i$       | $P_{11} - 4.6 - 1.7i$                               | _                            | $S_{11} - 8.3$ -       |
| $\Delta^*(1620) S_{31}$   | _                            | _                                                   | $D_{31}$ 11.1 - 4.0 <i>i</i> | _                      |
| $\Delta^*(1910) P_{31}$   | _                            | $P_{31}$ 15.0 - 0.3 <i>i</i>                        | _                            | _                      |
| $N^*(1720) P_{13}$        | $P_{13} - 7.7 + 5.5i$        | $P_{13} - 14.1 + 3.0i$                              | $F_{13} = 0.0 - 0.3i$        | $D_{13} - 0.8$         |
| $N^{*}(1520) D_{13}$      | $D_{13}  0.16 - 0.60i$       | $D_{13}$ 0.0 + 0.4 <i>i</i>                         | $S_{13} - 12.9 - 0.7i$       | $P_{13} - 0.6$         |
| $\Delta(1232) P_{33}$     | _                            | $P_{33} - (4 \text{ to } 5) + i(0 \text{ to } 0.5)$ | $F_{33} \sim 0$              | _                      |
| $\Delta^*(1700) D_{33}$   | _                            | $D_{33} - 0.7 - 0.3i$                               | $S_{33} - 19.7 + 4.5i$       | _                      |

Resonance couplings  $g_i [10^{-3} \text{ MeV}^{-1/2}]$  to the coupled channels *i*. Also, the LJS type of each coupling is indicated. For the  $\rho N$  channels, the total spin S is also indicated.



PWA 2011 Washington DC, May 23-27, 2011

## Zeros and branching ratio to $\pi N$ , $\eta N$

◀ back

| first sheet |             | secon    | d sheet     | [FA02]       |
|-------------|-------------|----------|-------------|--------------|
| $P_{11}$    | 1235 - 0 i  | $S_{11}$ | 1587 - 45 i | 1578 - 38 i  |
| $D_{33}$    | 1396 - 78 i | $S_{31}$ | 1585 - 17 i | 1580 - 36 i  |
|             |             | $P_{31}$ | 1848 - 83 i | 1826 - 197 i |
|             |             | $P_{13}$ | 1607 - 38 i | 1585 - 51 i  |
|             |             | $P_{33}$ | 1702 - 64 i | -            |
|             |             | $D_{13}$ | 1702-64i    | 1759-64i     |

Position of zeros of the full amplitude T in [MeV]. [FA02]: Arndt et al., PRC 69 (2004).

| N*(1525) G.             | $\Gamma_{\pi N}/\Gamma_{\text{Tot}}$ [%] | $\Gamma_{\eta N}/\Gamma_{\text{Tot}}$ [%] |
|-------------------------|------------------------------------------|-------------------------------------------|
| $N^{-}(1000) S_{11}$    | 48 [55 10 55]                            | 38 [45 10 00]                             |
| $N^*(1650) S_{11}$      | 79 [60 to 95]                            | 6 [3 to 10]                               |
| $N^*(1440) P_{11}$      | 64 <b>[55 to 75]</b>                     | $0 [0 \pm 1]$                             |
| $\Delta^*(1620) S_{31}$ | 34 [20 to 30]                            | _                                         |
| $\Delta^*(1910) P_{31}$ | 11 <b>[15 to 30]</b>                     | _                                         |
| $N^*(1720) P_{13}$      | 13 [10 to 20]                            | $38 [4 \pm 1]$                            |
| $N^*(1520) D_{13}$      | 67 [55 to 65]                            | $0.10 \ [0.23 \pm 0.04]$                  |
| $\Delta(1232) P_{33}$   | 100 [100]                                | _                                         |
| $\Delta^*(1700) D_{33}$ | 13 [10 to 20]                            | _                                         |

Branching ratios into  $\pi N$  and  $\eta N$ . The values in brackets are from the PDG, [Amsler et al., PLB 667 (2008)].



PWA 2011 Washington DC, May 23-27, 2011

# Couplings and dressed vertices

back

Residue  $a_{-1}$  vs. dressed vertex  $\Gamma$  vs. bare vertex  $\gamma$ .



$$\begin{aligned} a_{-1} &= \frac{\Gamma_d \, \Gamma_d^{(\dagger)}}{1 - \frac{\partial}{\partial Z} \Sigma} \\ g &= \sqrt{a_{-1}} \\ r &= |(\Gamma_D - \gamma_B) / \Gamma_D|, \\ r' &= |1 - \sqrt{1 - \Sigma'}|, \end{aligned}$$

• Dressed  $\Gamma$  depends on  $T^{\rm NP}$ .

• 
$$\sqrt{a_{-1}} \neq \Gamma \neq \gamma$$

|    | r [%] | r' [% |
|----|-------|-------|
|    | 53    | 61    |
|    | 24    | 45    |
| 2i | 45    | 40    |
|    | 130   | 66    |
|    | 33    | 54    |
|    | 222   | 22    |

## Pole repulsion in $P_{33}$





Observables

#### ▲ back

## $g_{fi}$ und $h_{fi}$ in JLS-Basis:

$$g_{fi} = \frac{1}{2\sqrt{k_f k_i}} \sum_{j} (2j+1) d^j_{\frac{1}{2}\frac{1}{2}}(\theta) \left[ \tau^{j(j-\frac{1}{2})\frac{1}{2}} + \tau^{j(j+\frac{1}{2})\frac{1}{2}} \right] \cos\frac{\theta}{2} \\ + \frac{1}{2\sqrt{k_f k_i}} \sum_{j} (2j+1) d^j_{-\frac{1}{2}\frac{1}{2}}(\theta) \left[ \tau^{j(j-\frac{1}{2})\frac{1}{2}} - \tau^{j(j+\frac{1}{2})\frac{1}{2}} \right] \sin\frac{\theta}{2}$$

$$h_{fi} = \frac{-i}{2\sqrt{k_f k_i}} \sum_{j} (2j+1) d^j_{\frac{1}{2}\frac{1}{2}}(\theta) \left[ \tau^{j(j-\frac{1}{2})\frac{1}{2}} + \tau^{j(j+\frac{1}{2})\frac{1}{2}} \right] \sin \frac{\theta}{2} \\ + \frac{i}{2\sqrt{k_f k_i}} \sum_{j} (2j+1) d^j_{-\frac{1}{2}\frac{1}{2}}(\theta) \left[ \tau^{j(j-\frac{1}{2})\frac{1}{2}} - \tau^{j(j+\frac{1}{2})\frac{1}{2}} \right] \cos \frac{\theta}{2}$$



# Observables

#### ▲ back

$$\begin{aligned} \frac{d\sigma}{d\Omega} &= \frac{k_f}{k_i} (|g_{fi}|^2 + |h_{fi}|^2) \\ &= \frac{1}{2k_i^2} \frac{1}{2} \cdot \left( \left| \sum_j (2j+1) (\tau^{j(j-\frac{1}{2})\frac{1}{2}} + \tau^{j(j+\frac{1}{2})\frac{1}{2}}) \cdot d^j_{\frac{1}{2}\frac{1}{2}}(\Theta) \right|^2 \\ &+ \left| \sum_j (2j+1) (\tau^{j(j-\frac{1}{2})\frac{1}{2}} - \tau^{j(j+\frac{1}{2})\frac{1}{2}}) \cdot d^j_{-\frac{1}{2}\frac{1}{2}}(\Theta) \right|^2 \right) \end{aligned}$$

$$\vec{P}_{f} = rac{2Re(g_{fi}h_{fi}^{*})}{|g_{fi}|^{2} + |h_{fi}|^{2}} \cdot \hat{n}$$

$$\beta = \arctan\left(\frac{2Im(h_{fi}^*g_{fi})}{\left|g_{fi}\right|^2 - \left|h_{fi}\right|^2}\right)$$

Jülich analysis

# Differential cross section of $\pi^+ p \to K^+ \Sigma^+$ (Jack



PWA 2011 Washington DC, May 23-27, 2011

Jülich analysis

# Differential cross section of $\pi^+ p \to K^+ \Sigma^+$ (Jack



PWA 2011 Washington DC, May 23-27, 2011

Jülich analysis

# Differential cross section of $\pi^+ p \to K^+ \Sigma^+$ (back



PWA 2011 Washington DC, May 23-27, 2011

Jülich analysis

# Differential cross section of $\pi^+ p \to K^+ \Sigma^+$ (back



PWA 2011 Washington DC, May 23-27, 2011

Jülich analysis

# Polarization of $\pi^+ p \to K^+ \Sigma^+$



PWA 2011 Washington DC, May 23-27, 2011

Jülich analysis

# Polarization of $\pi^+ p \to K^+ \Sigma^+$



PWA 2011 Washington DC, May 23-27, 2011

Jülich analysis

# Polarization of $\pi^+p \to K^+\Sigma^+$



PWA 2011 Washington DC, May 23-27, 2011

Jülich analysis

# Polarization of $\pi^+ p \to K^+ \Sigma^+$



PWA 2011 Washington DC, May 23-27, 2011

Jülich analysis

## Error analysis

- Determination of the non-linear parameter error
  - $\chi^2 + 1$  criterion.
  - Varying 39 of 40 parameters to get parameter error.
- Get error on derived quantities like pole positions and residues.
- So far, simplified consideration (error from  $\pi N$  not available, because energy dependent GWU/SAID solution is fitted [PRC74 (2006)]).





## Error estimates for parameters and derived quantities

Table: Error estimates of bare mass  $m_b$  and bare coupling f for the  $\Delta(1905)F_{35}$  resonance.

| $m_b \; [{\rm MeV}]$ | $\pi N$                             | $\rho N$                | $\pi\Delta$                      | $\Sigma K$                         |
|----------------------|-------------------------------------|-------------------------|----------------------------------|------------------------------------|
| $2258^{+44}_{-43}$   | $0.0500\substack{+0.0011\\-0.0012}$ | $-1.62^{+1.29}_{-1.61}$ | $-1.15\substack{+0.030\\-0.022}$ | $0.120\substack{+0.0065\\-0.0059}$ |

Table: Error estimates of pole position and residues for the  $\Delta(1905)F_{35}$  resonance.

|                    |                    |                           | $\pi N \to \pi N$  | $\pi N \to K \Sigma$  |
|--------------------|--------------------|---------------------------|--------------------|-----------------------|
| $Re  z_0 \; [MeV]$ | $1764^{+18}_{-20}$ | r  [MeV]                  | $11^{+1.7}_{-1.4}$ | $1.4^{+0.24}_{-0.21}$ |
| $Im  z_0   [MeV]$  | $-109^{+13}_{-12}$ | $\theta$ [ <sup>0</sup> ] | $-45^{+3.8}_{-11}$ | $-313^{+4.2}_{-10}$   |





|                      | Re $z_0$ [MeV]             | r  [MeV]                  | $(\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}) / \Gamma_{\text{tot}}$ [%] |                |               |
|----------------------|----------------------------|---------------------------|---------------------------------------------------------------------------|----------------|---------------|
|                      | -2 Im z <sub>0</sub> [MeV] | $\theta$ [ <sup>0</sup> ] | This study                                                                | Candlin (1983) | Gießen (2004) |
| $\Delta(1905)F_{35}$ | 1764                       | 1.4                       | 1.23                                                                      | 1.5(3)         | <1            |
| 5/2+ ****            | 218                        | -313                      |                                                                           |                |               |
| $\Delta(1910)P_{31}$ | 1721                       | 5.5                       | 2.98                                                                      | <3             | 1.1           |
| $1/2^+$ ****         | 323                        | -6                        |                                                                           |                |               |
| $\Delta(1920)P_{33}$ | 1884                       | 5.9                       | 5.07                                                                      | 5.2(2)         | 2.1(3)        |
| 3/2+ ***             | 229                        | -38                       |                                                                           |                |               |
| $\Delta(1930)D_{35}$ | 1865                       | 1.6                       | 2.14                                                                      | <1.5           |               |
| 5/2" ***             | 147                        | -43                       |                                                                           |                |               |
| $\Delta(1950)F_{37}$ | 1873                       | 2.7                       | 2.54                                                                      | 5.3(5)         | _             |
| 7/2+ ****            | 206                        | -255                      |                                                                           |                |               |



# Coupled channels and gauge invariance

Haberzettl, PRC56 (1997), Haberzettl, Nakayama, Krewald, PRC74 (2006),





Gauge invariance: Generalized Ward-Takahashi identity (WTI) (Note the condition of current conservation  $k_{\mu}M^{\mu} = 0$  is necessary but not sufficient!)

$$k_{\mu}M^{\mu} = -|F_{s}\tau\rangle S_{p+k}Q_{i}S_{p}^{-1} + S_{p'}^{-1}Q_{f}S_{p'-k}|F_{u}\tau\rangle + \Delta_{p-p'+k}^{-1}Q_{\pi}\Delta_{p-p'}|F_{t}\tau\rangle$$

Strategy: Replace by phenomenological contact term such that the generalized WTI is satisfied



$$\frac{d\sigma/d\Omega}{\operatorname{preliminary}} \stackrel{\text{or } \gamma n \to \pi^- p}{\xrightarrow{}}$$



Differential cross section for  $\gamma n \rightarrow \pi^- p$ 



Photon spin asymmetry for  $\gamma n \to \pi^- p$ 



$$d\sigma/d\Omega$$
 and  $\Sigma_{\gamma}$  for  $\gamma p \to \pi^0 p$ 





Photon spin asymmetry for  $\gamma p \to \pi^0 p$ 



#### Dynamical coupled channels models in a box Prediction & analysis of lattice data [M.D., J. Haidenbauer, A. Rusetsky, U.-G. Meißner, E. Oset, in preparation]

Discretization of momenta in the scattering equation:

$$T(q'',q') = V(q'',q') + \int_{0}^{\infty} dq \ q^{2} \ V(q'',q) \frac{1}{z - E_{1}(q) - E_{2}(q) + i\epsilon} \ T(q,q')$$

$$\int \frac{\vec{d}^{3}q}{(2\pi)^{3}} f(|\vec{q}|^{2}) \quad \to \quad \frac{1}{L^{3}} \sum_{\vec{n}_{i}} f(|\vec{q}_{i}|^{2}), \quad \vec{q}_{i} = \frac{2\pi}{L} \vec{n}_{i}, \quad \vec{n}_{i} \in \mathbb{Z}^{3}$$

$$T(q'',q') = V(q'',q') + \frac{2\pi^2}{L^3} \sum_{i=0}^{\infty} \vartheta(i) V(q'',q_i) \frac{1}{z - E_1(q_i) - E_2(q_i)} T(q_i,q'),$$

- Can be also expressed in terms of the Lüscher  $\mathcal{Z}_{00}$  function up to  $e^{-L}$  relativistic corrections.
- Takes into account discretization effects of the potentials themselves.
- Twisted boundary conditions, e.g.

$$u(\mathbf{x} + L\mathbf{e}_i) = u(\mathbf{x}), \ d(\mathbf{x} + L\mathbf{e}_i) = d(\mathbf{x}), \ s(\mathbf{x} + L\mathbf{e}_i) = e^{i\theta}s(\mathbf{x}),$$

especially suited for coupled-channels problem (enables to move thresholds) [V. Bernard, M. Lage, U.-G. Meißner, A. Rusetsky, JHEP (2011)].

PWA 2011 Washington DC, May 23-27, 2011





PWA 2011 Washington DC, May 23-27, 2011

Jülich analysis