

23–27 May, 2011 — Washington, DC, U.S.A.

Reciprocal consistency constraints among photoprocesses

Helmut Haberzettl

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON DC

Collaborators: F. Huang, K. Nakayama (UGA); M. Döring, S. Krewald (FZJ)

Derive a detailed microscopic description of the nucleon current J^{μ}

Derive a detailed microscopic description of the nucleon current J^{μ} :

- Full implementation of gauge invariance in terms of Generalized Ward–Takahashi identities
- Assure reciprocal consistency of reaction dynamics among all affected photoprocesses

Introduction

How does one describe the current in a Lorentz-covariant Bethe-Salpeter-type approach?

How does one describe the current in a Lorentz-covariant Bethe-Salpeter-type approach?

The most general Lorentz-covariant structure of J^{μ} requires **12 form factors**.

Bincer, PR118,855(1960)

- Applying gauge invariance, this reduces to **8 form factors**.
- Applying time-reversal invariance, this reduces further to **6 form factors**.

How does one describe the current in a Lorentz-covariant Bethe-Salpeter-type approach?

The most general Lorentz-covariant structure of J^{μ} requires **12 form factors**.

Bincer, PR118,855(1960)

- Applying gauge invariance, this reduces to **8 form factors**.
- Applying time-reversal invariance, this reduces further to **6 form factors**:

$$F_1$$
, F_2 , f_1 , f_2 , g_1 , g_2

$$J^{\mu}(p',p) = e \left[\delta_{N} \gamma^{\mu} + \delta_{N} \gamma^{\mu}_{T}(F_{1}-1) + \frac{i\sigma^{\mu\nu}k_{\nu}}{2m} \kappa_{N}F_{2} \right] + \frac{S^{-1}(p')}{2m} \left(\gamma^{\mu}_{T}f_{1} + \frac{i\sigma^{\mu\nu}k_{\nu}}{2m} \kappa_{N}f_{2} \right) + \left(\gamma^{\mu}_{T}f_{1} + \frac{i\sigma^{\mu\nu}k_{\nu}}{2m} \kappa_{N}f_{2} \right) \frac{S^{-1}(p)}{2m} + \frac{S^{-1}(p')}{2m} \left(\gamma^{\mu}_{T}g_{1} + \frac{i\sigma^{\mu\nu}k_{\nu}}{2m} \kappa_{N}g_{2} \right) \frac{S^{-1}(p)}{2m} \right]$$
(Approximation)

p'

How does one describe the current in a Lorentz-covariant Bethe-Salpeter-type approach?

The most general Lorentz-covariant structure of J^{μ} requires **12 form factors**.

Bincer, PR118,855(1960)

Applying gauge invariance, this reduces to **8 form factors**.

г

Applying time-reversal invariance, this reduces further to **6 form factors**: | F_1 , F_2 , f_1 , f_2 , g_1 , g_2 |

$$J^{\mu}(p',p) = e \left[\delta_{N} \gamma^{\mu} + \delta_{N} \gamma^{\mu}_{T}(F_{1}-1) + \frac{i\sigma^{\mu\nu}k_{\nu}}{2m} \kappa_{N}F_{2} \right] + \frac{S^{-1}(p')}{2m} \left(\gamma^{\mu}_{T}f_{1} + \frac{i\sigma^{\mu\nu}k_{\nu}}{2m} \kappa_{N}f_{2} \right) + \left(\gamma^{\mu}_{T}f_{1} + \frac{i\sigma^{\mu\nu}k_{\nu}}{2m} \kappa_{N}f_{2} \right) \frac{S^{-1}(p)}{2m} + \frac{S^{-1}(p')}{2m} \left(\gamma^{\mu}_{T}g_{1} + \frac{i\sigma^{\mu\nu}k_{\nu}}{2m} \kappa_{N}g_{2} \right) \frac{S^{-1}(p)}{2m} \right]$$
(Approximation)

Constraints:

p'

no kinematic singularity:
$$f_1(k^2) \xrightarrow{k^2=0} 0$$
 and $g_1(k^2) \xrightarrow{k^2=0} 0$
chiral-symmetry limit : $f_1 \rightarrow \frac{g_A - G_A(k^2)}{g_A}$ and $f_2 \rightarrow 1$

H. Haberzettl, PWA 2011, GWU, 23 May 2011

Implications of off-shell structure: Pion photoproduction

s-channel:

$$F_s S(p+k) J_i^{\mu}(p+k,p) = F_s S(p+k) \left(e\delta_i \gamma^{\mu} + \frac{i\sigma^{\mu\nu}k_{\nu}}{2m} e\kappa_i \right) + F_s \frac{i\sigma^{\mu\nu}k_{\nu}}{2m} \frac{e\kappa_i}{2m} f_{2\mu}$$

u-channel:

contact terms

$$J_f^{\mu}(p',p'-k)S(p'-k)F_u = \left(e\delta_f\gamma^{\mu} + \frac{i\sigma^{\mu\nu}k_{\nu}}{2m}e\kappa_f\right)S(p'-k)F_u + \frac{i\sigma^{\mu\nu}k_{\nu}}{2m}\frac{e\kappa_f}{2m}f_{2f}F_u$$

H. Haberzettl, PWA 2011, GWU, 23 May 2011

Implications of off-shell structure: Pion photoproduction

s-channel:

$$F_s S(p+k) J_i^{\mu}(p+k,p) = F_s S(p+k) \left(e\delta_i \gamma^{\mu} + \frac{i\sigma^{\mu\nu}k_{\nu}}{2m} e\kappa_i \right) + F_s \frac{i\sigma^{\mu\nu}k_{\nu}}{2m} \frac{e\kappa_i}{2m} f_{2i}$$

u-channel:

One cannot make the connection to low-energy $\chi {\rm PT}$ results without such contact terms.

$$J_f^{\mu}(p',p'-k)S(p'-k)F_u = \left(e\delta_f\gamma^{\mu} + \frac{i\sigma^{\mu\nu}k_{\nu}}{2m}e\kappa_f\right)S(p'-k)F_u + \frac{i\sigma^{\mu\nu}k_{\nu}}{2m}\frac{e\kappa_f}{2m}f_{2f}F_u$$

A Word about "Off-shell Effects"

It is often stated that "off-shell effects are not measurable" and that, therefore, any such effects should be summarily banished from any theory.

A Word about "Off-shell Effects"

It is often stated that "off-shell effects are not measurable" and that, therefore, any such effects should be summarily banished from any theory.

Franz Gross on off-shell effects

Panel discussion at the "17th European Conference on Few-Body Problems in Physics," Evora, Portugal, September 11–16, 2000, NPA689 (2001)

It is commonly stated that "off-shell effects" are unobservable. This is of course true, but so are wave functions, potentials, and most of the theoretical tools we use to describe physics. A better point is that off-shell effects are *meaningless without a theory or model to define them*. Almost all models provide such a definition, and off-shell effects should be discussed only in the context of a particular model that defines these effects *uniquely*.

A Word about "Off-shell Effects"

It is often stated that "off-shell effects are not measurable" and that, therefore, any such effects should be summarily banished from any theory.

Franz Gross on off-shell effects

Panel discussion at the "17th European Conference on Few-Body Problems in Physics," Evora, Portugal, September 11–16, 2000, NPA689 (2001)

It is commonly stated that "off-shell effects" are unobservable. This is of course true, but so are wave functions, potentials, and most of the theoretical tools we use to describe physics. A better point is that off-shell effects are *meaningless without a theory or model to define them.* Almost all models provide such a definition, and off-shell effects should be discussed only in the context of a particular model that defines these effects *uniquely*.

Within the Bethe-Salpeter-type equations that originate from effective Lagrangian formulations, the off-shell structure of the nucleon current arises naturally as an integral part of the description of the reaction dynamics.

For photoprocesses...

- the generic structural description of the nucleon current, in general, is not good enough
 - more details of the current's internal explicit reaction dynamics are required

For photoprocesses...

- the generic structural description of the nucleon current is, in general, not good enough;
 - more details of the current's internal explicit reaction dynamics are required.

Require reciprocal consistency among the various photoprocesses to determine the dynamical structures of the current J^{μ} .

Introduction

Dynamical Links between Photoprocesses

Pions, Nucleons, and Photons

Couple photon to dressed propagator:

Pion Photoproduction

Pion-production current M^{μ} :

Nucleon current J^{μ} :

 \Rightarrow The internal structures of the dressed nucleon current can be understood by the dynamics of the pion production current.

Pion-production current M^{μ} :

Contact-type current M_c^{μ} :

Pion-production current M^{μ} :

Contact-type current M_c^{μ} :

Gauge Invariance: Ward-Takahashi Identity (WTI)

$$k_{\mu}J^{\mu}(p',p) = k_{\mu}J^{\mu}_{s}(p',p) = S^{-1}(p')Q_{N} - Q_{N}S^{-1}(p)$$

S: dressed nucleon propagator

Everything is exact!

Everything is nonlinear!

Everything is hideously complicated!

Everything is nonlinear!

Everything is hideously complicated!

Let's cut the Gordian knot!

HH, F. Huang, K. Nakayama, arXiv:1103.2065 [nucl-th] (2011)

Cutting the Gordian Knot

Cutting the Gordian Knot

Reminder: Generalized Ward–Takahashi Identity

Generalized WTI for the full current M^{μ} :

$$k_{\mu}M^{\mu} = -F_s S(p+k)Q_i S^{-1}(p) + S^{-1}(p')Q_f S(p'-k)F_u + \Delta_{\pi}^{-1}(q)Q_{\pi}\Delta_{\pi}(q-k)F_t$$

Equivalent Generalized WTI for the interaction current M_{int}^{μ} :

$$k_{\mu}M_{\rm int}^{\mu} = -F_sQ_i + Q_fF_u + Q_{\pi}F_t$$

Reminder: Generalized Ward–Takahashi Identity

Generalized WTI for the full current M^{μ} :

$$k_{\mu}M^{\mu} = -F_s S(p+k)Q_i S^{-1}(p) + S^{-1}(p')Q_f S(p'-k)F_u + \Delta_{\pi}^{-1}(q)Q_{\pi}\Delta_{\pi}(q-k)F_t$$

Equivalent Generalized WTI for the interaction current M_{int}^{μ} :

$$k_{\mu}M_{\rm int}^{\mu} = -F_{s}Q_{i} + Q_{f}F_{u} + Q_{\pi}F_{t}$$
 Here: $k_{\mu}M_{\rm int}^{\mu} = k_{\mu}M_{c}^{\mu}$

Approximating M_c^{μ}

Lowest-order approximation in terms of phenomenological form factors:

$$M_c^{\mu} = ge\gamma_5 \frac{i\sigma^{\mu\nu}k_{\nu}}{4m^2}\tilde{\kappa}_N - (1-\lambda)g\frac{\gamma_5\gamma^{\mu}}{2m}\tilde{F}_t e_{\pi} - G_{\lambda} \left[e_i\frac{(2p+k)^{\mu}}{s-p^2}\left(\tilde{F}_s - \hat{F}\right)\right]$$

Don't try to read the details. What is important is that this is a simple expression, easy to evaluate, and that it helps preserve gauge invariance of the entire production current. $+ e_f \frac{(2p'-k)^{\mu}}{u-p'^2} \left(\tilde{F}_u - \hat{F}\right)$

 $+ e_{\pi} \frac{(2q-k)^{\mu}}{t-q^2} \left(\tilde{F}_t - \hat{F} \right)$

Approximating J_s^{μ}

Auxiliary currents:

$$j_{1}^{\mu} = \gamma^{\mu} (1 - \kappa_{1}) + \frac{i\sigma^{\mu\nu}k_{\nu}}{2m}\kappa_{1} \qquad \qquad j_{2}^{\mu} = \frac{(2p + k)^{\mu}}{2m}\kappa_{1} + \frac{i\sigma^{\mu\nu}k_{\nu}}{2m}\kappa_{2}$$
Two parameters!

Does it work? — Yes!

Preliminary results for $\gamma N
ightarrow \pi N$

Fei Huang, this afternoon

F. Huang, M. Döring, H. Haberzettl, J. Haidenbauer, C. Hanhart, S. Krewald, U.-G. Meißner, and K. Nakayama, in preparation

On the importance of maintaining gauge invariance

Preliminary results for $\gamma N \rightarrow \pi N$:

F. Huang, M. Döring, H. Haberzettl, J. Haidenbauer, C. Hanhart, S. Krewald, U.-G. Meißner, K. Nakayama, to be published (2011)

Dynamical Links between Photoprocesses — Bremsstrahlung

Bremsstrahlung Current:

$$J^{\mu}_{\mathsf{B}} = (TG_0+1)J^{\mu}_r(1+G_0T)$$
 T: NN T-matrix

Compare the photon processes along the top nucleon line above to the meson production diagrams below.

Essential parts of the process can be described as a meson capture process — i.e., as an inverse photoproduction process — in the presence of a spectator nucleon.

Bremsstrahlung $NN ightarrow NN\gamma$

Application to KVI data. — Or: Resolving a longstanding problem:

from meson photoproduction brings about a dramatic improvement.

Dynamical Links between Photoprocesses — **Two-Pion Production**

Basic Two-pion Production Mechanisms

Dynamical Links between Photoprocesses — Compton Scattering

Compton Scattering $\gamma N ightarrow \gamma N$

- *s* and *u*-channel terms employ dressed current just described.
- Contact term constrained by gauge invariance.

Conclusions

- There exists a very close relationship between the dressed nucleon current and the pion photoproduction current.
- Exploiting this relationship suggests physically meaningful approximations that work, despite the enormous complexity of the exact formalism.
- Maintaining full gauge invariance (as opposed to mere current conservation) is not a luxury but a necessity for the correct microscopic description of the reaction dynamics.
- Requiring gauge invariance in the form of *off-shell* (generalized) Ward-Takahashi identities for each subprocess provides a powerful tool for constraining the contributing mechanisms *and* ensuring overall gauge invariance as a matter of course.
- **Note:** Gauge invariance (as an off-shell condition) cannot be maintained in a non-covariant phenomenological Lagrange-type formalism. At best, one can have non-unique non-relativistic types of current conservation.

Derive a detailed microscopic description of the nucleon current J^{μ} :

- Full implementation of gauge invariance in terms of Generalized Ward–Takahashi identities
- ✓ Assure reciprocal consistency of reaction dynamics among all affected photoprocesses

Derive a detailed microscopic description of the nucleon current J^{μ} :

- ✓ Full implementation of gauge invariance in terms of Generalized Ward–Takahashi identities
- ✓ Assure reciprocal consistency of reaction dynamics among all affected photoprocesses
- ☑ As a bonus, this provides a novel* description of the pion photoproduction process that has many features that make it particularly well suited for practical applications

*) In the spirit of HH, Nakayama, Krewald, PRC 74, 045202 (2006), but decisively different in detail.