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Magnetic moment of the Roper

Effective Lagrangian relevant for the magnetic moment of the Roper

L = L0 + Lπ + LR + LNR + L∆R.

Here

L0 = N̄ (iD/ −mN0)N + R̄(iD/ −mR0)R

− Ψ̄µξ
3
2[(iD/ −m∆0) gµν − i (γµDν + γνDµ) + i γµD/ γν + m∆0 γµγν]ξ

3
2Ψν.

N and R denote nucleon and Roper isospin doublets. Ψν are the Rarita-

Schwinger fields of the ∆ resonance, ξ
3
2 is the isospin-3/2 projector.

Covariant derivatives are defined as follows:

DµH =
(
∂µ + Γµ − i v

(s)
µ

)
H ,

(DµΨ)ν,i = ∂µΨν,i − 2 i εijkΓµ,kΨν,j + ΓµΨν,i − i v
(s)
µ Ψν,i ,

Γµ =
1

2

[
u†∂µu + u∂µu† − i

(
u†vµu + uvµu†

)]
= τkΓµ,k.



Lowest-order Goldstone boson Lagrangian:

L(2)
π =

F2

4
Tr

(
∂µU∂µU†

)
+

F2M2

4
Tr

(
U† + U

)

+ i
F2

2
Tr

[(
∂µUU† + ∂µU†U

)
vµ

]
+ · · · .

vµ = −e τ3
2 Aµ; Pion fields are contained in U ; F is the pion-decay con-

stant in the chiral limit; M2 = 2Bm̂, where B is related to the quark

condensate 〈q̄q〉0 in the chiral limit.

Leading order pion-Roper Lagrangian:

L(1)
R =

gR

2
R̄γµγ5uµR ,

where gR is an unknown coupling constant and

uµ = i
[
u†∂µu− u∂µu† − i

(
u†vµu− uvµu†

)]
,

where u =
√

U .



Second and third order Roper Lagrangians:

L(2)
R = R̄

[
c∗6
2

f+
µν +

c∗7
2

v
(s)
µν

]
σµνR + · · · ,

L(3)
R =

i

2
d∗6R̄

[
Dµ, f+

µν

]
DνR + h.c. + 2 i d∗7R̄

(
∂µv

(s)
µν

)
DνR + h.c. + · · · ,

where

v
(s)
µν = ∂µv

(s)
ν − ∂νv

(s)
µ ,

v
(s)
µ = −eAµ

2
,

f+
µν = ufµνu† + u†fµνu ,

fµν = ∂µvν − ∂νvµ − i[vµ, vν]

and c∗6, c∗7, d∗6 and d∗7 are unknown coupling constants.



Leading order interaction between the nucleon and the Roper:

L(1)
NR =

gNR

2
R̄γµγ5uµN + h.c.

with an unknown coupling constant gNR.

Leading-order interaction between the delta and the Roper:

L(1)
∆R = −g∆R Ψ̄µ ξ

3
2 (gµν + z̃ γµγν)uν R + h.c. ,

where g∆R is a coupling constant and we take z̃ = −1.



We apply the complex-mass scheme (CMS):

R. G. Stuart, in Z0 Physics, ed. J. Tran Thanh Van (Editions Frontiers,

Gif-sur-Yvette, 1990), p.41.

A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Nucl. Phys. B560,

33 (1999).

A. Denner, S. Dittmaier, M. Roth and L. H. Wieders, Nucl. Phys. B724,

247 (2005).

Generalization of the on-mass-shell scheme to unstable particles.

Well suited for unstable particles in perturbation theory.



Bare parameters of the Lagrangian are split into complex (in general)

renormalized parameters and complex (in general) counterterms.

Renormalized masses are chosen as poles of dressed propagators in chiral

limit:

mR0 = zχ + δzχ ,

mN0 = mχ + δm ,

m∆0 = z∆χ + δz∆χ . (1)

zχ - complex pole of the Roper propagator in the chiral limit.

mχ - mass of the nucleon in the chiral limit.

z∆χ - pole of the delta propagator in the chiral limit.

Renormalized parameters zχ, m, and z∆χ are included in the propagators

and the counterterms are treated perturbatively.



Power counting:

Interaction vertex obtained from an O(qn) Lagrangian ∼ qn,

Pion propagator ∼ q−2,

Nucleon propagator ∼ q−1,

∆ propagator ∼ q−1,

Roper propagator ∼ q−1,

Loop integration ∼ q4.

Within CMS, such a power counting is respected in the range of energies

close to the Roper mass.



Dressed propagator of the Roper

iSR(p) =
i

p/ − zχ −ΣR(p/)
,

where −iΣR(p/) denotes the self-energy of the Roper.

the pole of the dressed propagator SR is obtained by solving

z − zχ −ΣR(z) = 0 . (2)

The pole mass and the width:

z = mR − i
ΓR

2
. (3)

Dressed propagator has a pole only on the second Riemann sheet.

ΣR(zχ) = 0

on the second Riemann sheet.

ΣR(zχ) 6= 0

on the first Riemann sheet.



Roper propagator close to the pole

iSR(p) =
i Z

p/ − z
+ n.p. .

Physical quantities characterizing unstable particles have to be extracted

at pole positions using the complex-valued Z.

Up to order O(q3), Z is obtained by calculating the Roper self-energy

diagrams shown in Figure.
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Diagrams contributing in Roper form factors

Tree diagrams:

1 2 3

(T3)(T2)(T1)



Loop Diagrams:
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Parameterize the renormalized vertex function for p2
f = p2

i = z2:

√
Z w̄i(pf)Γ

µ(pf , pi)w
j(pi)

√
Z = w̄i(pf)

[
γµ F1(q

2) +
i σµν qν

2mN
F2(q

2)

]
wj(pi).

F1(q
2) and F2(q

2) are complex valued functions.

Z× tree diagrams subtracts all power counting violating loop contribu-

tions in F1(q
2). We obtain F1(0) = (1 + τ3)/2.

Power counting violating loop contributions in magnetic form factor are

absorbed in the renormalization of c∗6 and c∗7.

Subtracted loop contributions satisfy the power counting.



Magnetic moment:

µR = F2(0).

F2(t) = mN [G1(t) + τ3G2(t)].

Tree order result:

Gtree
1 (0) = mN c∗7 ,

Gtree
2 (0) = 2mN c∗6 .

Loop contributions:

Gloop
1 (0) =

3g2
R

16F2zχ

(
M2 − 4z2

χ

)
π2

{
[z2

χ −A0

(
z2
χ

)

−
(
M2 − 3z2

χ

)
B0

(
z2
χ, M2, z2

χ

)
]M2 +

(
M2 − 2z2

χ

)
A0

(
M2

)
· · ·

}

Gloop
2 (0) =

g2
R

16F2zχ

(
M2 − 4z2

χ

)
π2

{
−A0

(
z2
χ

)
M2 +

(
3M2 − 10z2

χ

)
A0

(
M2

)

+ z2
χ

[
M2 − 2

(
M2 − 4z2

χ

)
B0

(
z2
χ,0, z2

χ

)]
+ · · ·

}
.



Loop functions are given as

A0

(
m2

)
=

(2π µ)4−n

i π2

∫
dnk

k2 −m2 + iε
= −32π2λ m2 − 2m2 ln

m

µ
,

B0

(
p2, m2

1, m2
2

)
=

(2π µ)4−n

i π2

∫
dnk[

k2 −m2
1 + iε

] [
(p + k)2 −m2

2 + iε
]

= −32π2λ + 2 ln
µ

m2
− 1− ω

2
2F1 (1,2; 3;ω)

−1

2

(
1 +

m2
2

m2
1(ω − 1)

)
2F1

(
1,2; 3; 1 +

m2
2

m2
1(ω − 1)

)
,

ω =
m2

1 −m2
2 + p2 +

√(
m2

1 −m2
2 + p2

)2 − 4m2
1p2

2m2
1

,

where 2F1 (a, b; c; z) is the standard hypergeometric function, µ is the

scale parameter of the dimensional regularization and

λ =
1

16π2

{
1

n− 4
− 1

2

[
ln(4π) + Γ′(1) + 1

]}
.



Vector form factor of the pion

Effective Lagrangian relevant for the pion form factor calculation (up

to higher order terms)

L =
F2

4
Tr

[
DµU (DµU)†

]
+

F2

4
Tr

[
χU† + Uχ†

]

+
M2 + cxTr

[
χ+

]
/4

g2
Tr [(gρµ − iΓµ) (gρµ − iΓµ)]

− 1

2
Tr [ρµνρµν] + i dxTr [ρµνΓ

µν]

−
√

2

2
fV Tr

{
ρµνf

µν
+

}
, (4)



Here

U(x) = u2(x) = exp

(
iΦ(x)

F

)
,

DµA = ∂µA− irµA + iAlµ ,

χ+ = M2(U† + U) ,

Γµ =
1

2

[
u†∂µu + u∂µu† − i

(
u†rµu + ulµu†

)]
,

ρµν = ∂µρν − ∂νρµ − ig [ρµ, ρν] ,

Γµν = ∂µΓν − ∂νΓµ + [Γµ,Γν],

f
µν
± = uF

µν
L u† ± u†Fµν

R u ,

rµ = vµ + aµ , lµ=vµ − aµ ,

vµ and aµ are external vector and axial vector fields.

Renormalization using CMS.



Power counting rules:

Pion propagator ∼ O(q−2) if it does not carry large external momenta

and ∼ O(q0) if it does.

Vector-meson propagator ∼ O(q0) without large external momenta and

∼ O(q−1) - otherwise.

Pion mass ∼ O(q1), ρ-meson mass ∼ O(q0), and the width ∼ O(q1).

Vertices generated by L(n)
π count ∼ O(qn).

Derivatives acting on heavy vector mesons ∼ O(q0).

Investigate all possible flows of external momenta through loop diagrams

and determine the chiral order for each flow.

Smallest order resulting from various assignments = chiral order of the

diagram.



a) b)

Diagrams contributing to the pion form factor.



Diagrams of group a).



Diagrams of group b).
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Pion form factor: Tree order - left; Tree + loop - right; Data - red dots;



Data:

Kloe Collab., Phys. Lett. B 670 (2009);

S. Schael et al. [ALEPH Collaboration], Phys. Rept. 421, 191 (2005).



Some aspects of complex-mass scheme

CMS leads to complex-valued renormalized parameters.

Issue of perturbative unitarity of the S-matrix in the CMS is still open.

Lagrangian does not change → Unitarity is not violated in exact theory.

Perturbation theory is based on order-by-order approximation to the

exact results → Not obvious that the approximate expressions to the

S-matrix satisfy unitarity.



Branching points are determined by poles of full propagators.

Branching points corresponding to unstable particles are complex.

Cuts can be placed arbitrarily.

Sometimes branching points, corresponding to unstable states, are placed

on real axis.

If poles are not very far from the real axis this is a reasonable approxi-

mation.

CMS places the poles and branching points at exact (complex) positions

already at the leading order.



Imaginary parts of loop integrals with complex masses

Standard causal propagator of a scalar particle

S(p) =
1

p2 −m2 + i ε
=

p2 −m2

(
p2 −m2

)2
+ ε2

− i π δ
(
p2 −m2

)
.

ε → 0 limit is assumed.



Corresponding advanced and retarded propagators:

SA(p) =
1

2Ep

[
1

p0 − Ep − i ε
− 1

p0 + Ep − i ε

]

=
p2 −m2

(
p2 −m2

)2
+ ε2

+ i π δ
(
p2 −m2

)
σp,

SR(p) =
1

2Ep

[
1

p0 − Ep + i ε
− 1

p0 + Ep + i ε

]

=
p2 −m2

(
p2 −m2

)2
+ ε2

− i π δ
(
p2 −m2

)
σp,

where σp = sign(p0) and Ep =
√

~p 2 + m2.



Propagator of an unstable scalar particle in CMS

S′(p) =
1

p2 −M2 + i (MΓ + ε)

=
p2 −M2

(
p2 −M2

)2
+ (M Γ + ε)2

− i (MΓ + ε)
(
p2 −M2

)2
+ (MΓ + ε)2

.

ε can be neglected for finite Γ, but important for Γ → 0.



”Advanced” and ”retarded” propagators:

S′A(p) =
1

w(p) + w(p)∗

[
1

p0 − w(p)∗
− 1

p0 + w(p)

]
,

=
p2 −M2 −M2Γ2/(2x(p)2)

(
p2 −M2

)2
+ M2Γ2

+
i M Γ

(
p2 −M2

)2
+ M2Γ2

p0

x(p)
,

S′R(p) =
1

w(p) + w(p)∗

[
1

p0 − w(p)
− 1

p0 + w(p)∗

]

=
p2 −M2 −M2Γ2/(2x(p)2)

(
p2 −M2

)2
+ M2Γ2

− i M Γ
(
p2 −M2

)2
+ M2Γ2

p0

x(p)
,

w(p) = x(p)− i y(p) ,

x(p) =
1√
2

√(
E4

p + M2Γ2
)1/2

+ E2
p = Ep +O(Γ2) ,

y(p) =
1√
2

√(
E4

p + M2Γ2
)1/2 − E2

p = M Γ/(2 Ep) +O(Γ3) ,

Ep =
√

~p 2 + M2 .



Consider one-loop integral

I1 = i
∫

d4k

(2π)4
d4q

(2π)4
(2π)4δ4(k + q − p)S(k)S′(q). (5)

Imaginary part of this integral is given by

Im[I1] =
∫

d4k

(2π)4
d4q

(2π)4
(2π)4δ4(k + q − p)

×
[ k2 −m2

(
k2 −m2

)2
+ ε2

q2 −M2

(
q2 −M2

)2
+ M2Γ2

− π δ
(
k2 −m2

) M Γ
(
q2 −M2

)2
+ M2Γ2

]
. (6)

To rewrite the first term consider the equality

0 = i
∫

d4k

(2π)4
d4q

(2π)4
(2π)4δ4(k + q − p)SA(k)S′R(q) (7)



and take the imaginary parts of both sides

0 =
∫

d4k

(2π)4
d4q

(2π)4
(2π)4δ4(k + q − p)

×
[ k2 −m2

(
k2 −m2

)2
+ ε2

q2 −M2

(
q2 −M2

)2
+ M2Γ2

+ π δ
(
k2 −m2

)
σk

q0
Eq

M Γ
(
q2 −M2

)2
+ M2Γ2

+O(Γ2)
]
. (8)

Subtracting Eq. (8) from Eq. (6) obtain

Im[I1] = −π
∫

d4k

(2π)4
δ

(
k2 −m2

) (M Γ + ε)
[
1 + σp−k σk

]

[
(p− k)2 −M2

]2
+ (M Γ + ε)2

+O(Γ2),

Γ→0 ⇒ −π
∫

d4k

(2π)4
δ

(
k2 −m2

)
δ((p− k)2 −M2)

[
1 + σp−k σk

]
,

where the second line corresponds to the standard cutting formula for

loop integrals with real masses.



Generalization to any one-loop integral with complex masses leads to:

• For each cut of the line of an unstable particle one obtains one

overall factor of Γ.

• For each cut of the line of the stable particle one gets a delta-

function.

• For the integrals containing only propagators of stable particles the

usual cutting rules apply.



The Model

Consider a model of an unstable vector boson interacting with a fermion

L = −1

4
F0µνF

µν
0 +

M2
0

2
B0µB

µ
0

+ ψ̄0 (i∂/ −m0)ψ0 + g0 ψ̄0 γµψ0 B
µ
0,

where F0
µν = ∂µB0

ν − ∂νB0
µ.

Vector boson decays into a fermion-antifermion pair.

Renormalization in two steps: first get rid off the divergences by applying

the dimensional regularization with the MS scheme.

Next express the renormalized masses of MS scheme in terms of poles

of the dressed propagators.



Substitutions into the Lagrangian

B
µ
0 → Bµ, ψ0→ψ,

m0 → m + δm, g0→g,

M2
0 → M2 − i MΓ + δz ≡ z + δz , (9)

result in

L = Lmain + Lct ,

Lmain = −1

4
FµνFµν +

z

2
BµBµ+ψ̄ (i∂/ −m)ψ + g ψ̄ γµψ Bµ,

Lct =
δz

2
BµBµ − δm ψ̄ ψ .

Counter term Lagrangian Lct is treated perturbatively and the propaga-

tors read

i SF (p) =
i

p/ −m + i ε
,

i Sµν(p) = −i
gµν − pµpν/z

p2 − z
. (10)



Perturbative unitarity of the S-matrix

Diagrams contributing in the f̄f → f̄f amplitude:

a) b) c) e)

f) g)

d)

h) i)

j) k) l) m) n)



Imaginary part of the tree-order amplitude shown in Fig. a)

Im [Ta] = Im

[
V µ s− z∗

(s− z)(s− z∗)
Vµ

]
=−V µ M Γ

(s− z)(s− z∗)
Vµ . (11)

Imaginary parts of one-loop diagrams c) and i)

Im [Ti + Tc] = V µ Im [Π(s) + δz1]

(s− z)(s− z∗)
Vµ +O

(
Γ3

)
. (12)

×

The ”square” of the tree-order amplitude above reads

TT † = 2V µ Im [Π(s)]

(s− z)(s− z∗)
Vµ . (13)

From Eqs. (11), (12) and (13), using Im[δz1] = M Γ +O( h̄2), follows

that unitarity is satisfied up to O
(
Γ3

)
.



Summary

• Magnetic moment of the Roper resonance in the framework of the

low-energy EFT of QCD.

• Vector form factor of the pion.

• Perturbative unitarity of the scattering amplitude within CMS for

one-loop diagrams.

• Result obtained under assumption that the expansion parameter re-

mains real.

• Unstable particles do not appear as asymptotic states.

• Generalization of cutting rules to multi-loop diagrams is straightfor-

ward, analysis of perturbative unitarity - more involved.


