

Sixth International Workshop on Pion-Nucleon Partial-Wave Analysis and the Interpretation of Baryon Resonances

23-27 May, 2011 • Washington, DC, U.S.A.

APPLICATIONS OF THE I/N_C EXPANSION TO BARYONS

Jose L Goity Hampton University and Jefferson Lab

Outline

- Spin-flavor symmetry in baryons
- I/N_c expansion
- Excited baryons: SU(6)xO(3) scheme
- Some general results
- Partial widths of the [70, I-]
- Configuration mixings
- Summary

SU(6)xO(3)

Multiplet	Baryon	Name, status	Exp.(MeV)
$[56, 0^+]$	$N_{1/2}$	N * * * *	939 ± 1
	$\Lambda_{1/2}$	$\Lambda * * * *$	1116 ± 1
	$^{8}\Sigma_{1/2}$	$\Sigma * * * *$	1192 ± 4
	$8\Xi_{1/2}$	$\Xi * * * *$	1318 ± 3
	$\Delta_{1/2}$	$\Delta * * * *$	1232 ± 1
	$10 \Sigma_{3/2}$	$\Sigma^* * * * *$	1383 ± 3
	$10\Xi_{3/2}$	$\Xi^* * * * *$	1532 ± 1
	$\Omega_{3/2}$	$\Omega^- * * * *$	1672 ± 2
$[56, 0^+]$	$N_{1/2}$	N(1440) * * * *	1440 ± 20
	$\Delta_{3/2}$	$\Delta(1600) * **$	1600 ± 75
	$\Lambda_{1/2}$	$\Lambda(1600) * **$	1600 ± 75
	$\Sigma_{1/2}$	$\Sigma(1660) * **$	1660 ± 30
$[56, 2^+]$	N _{3/2}	N(1720) * * * *	1700 ± 50
	$\Lambda_{3/2}$	$\Lambda(1890) * * * *$	1880 ± 30
	$N_{5/2}$	N(1680) * * * *	1683 ± 8
	$\Lambda_{5/2}$	$\Lambda(1820) * * * *$	1820 ± 5
	$^{8}\Sigma_{5/2}$	$\Sigma(1915) * * * *$	1918 ± 18
	$\Delta_{1/2}$	$\Delta(1910) * * * *$	1895 ± 25
	$\Delta_{3/2}$	$\Delta(1920) * **$	1935 ± 35
	$\Delta_{5/2}$	$\Delta(1905) * * * *$	1895 ± 25
	$\Delta_{7/2}$	$\Delta(1950) * * * *$	1950 ± 10
	$10\Sigma_{7/2}$	$\Sigma(2030) * * * *$	2033 ± 8
$[56, 4^+]$	$N_{9/2}$	N(2220) * * * *	2245 ± 65
	$\Lambda_{9/2}$	$\Lambda(2350) * **$	2355 ± 15
	$\Delta_{7/2}$	$\Delta(2390)*$	2387 ± 88
	$\Delta_{9/2}$	$\Delta(2300)*$	2318 ± 132
	$\Delta_{11/2}$	$\Delta(2420)*$	2400 ± 100
$[56, 6^+]$	$N_{13/2}$	N(2700) * *	$2\overline{806 \pm 207}$
	$\Delta_{15/2}$	$\Delta(2950) * *$	2920 ± 122

Multiplet	Baryon	Name, status	Exp. (MeV)
$[70, 1^-]$	$N_{1/2}$	$N(1535)^{****}$	1538 ± 18
	$^{8}\Lambda_{1/2}$	$\Lambda(1670)^{****}$	1670 ± 10
	$N_{3/2}$	$N(1520)^{****}$	1523 ± 8
	$^{8}\Lambda_{3/2}$	$\Lambda(1690)^{****}$	1690 ± 5
	${}^{8}\Sigma_{3/2}$	$\Sigma(1670)^{****}$	1675 ± 10
	$^{8}\Xi_{3/2}$	$\Xi(1820)^{***}$	1823 ± 5
	$N'_{1/2}$	$N(1650)^{****}$	1660 ± 20
	$^{8}\Lambda'_{1/2}$	$\Lambda(1800)^{***}$	1785 ± 65
	${}^{8}\Sigma'_{1/2}$	$\Sigma(1750)^{***}$	1765 ± 35
	$N'_{3/2}$	$N(1700)^{***}$	1700 ± 50
	$N'_{5/2}$	$N(1675)^{****}$	1678 ± 8
	$^{8}\Lambda'_{5/2}$	$\Lambda(1830)^{****}$	1820 ± 10
	$8\Sigma'_{5/2}$	$\Sigma(1775)^{****}$	1775 ± 5
	$\Delta_{1/2}$	$\Delta(1620)^{****}$	1645 ± 30
	$\Delta_{3/2}$	$\Delta(1700)^{****}$	1720 ± 50
	$^{1}\Lambda_{1/2}$	$\Lambda(1405)^{****}$	1407 ± 4
	$^{1}\Lambda_{3/2}$	$\Lambda(1520)^{****}$	1520 ± 1
$[70, 2^+]$	$N'_{1/2}$	N(2100)*	1926 ± 26
	$N'_{5/2}$	N(2000)**	1981 ± 200
	$\Lambda'_{5/2}$	$\Lambda(2110)^{***}$	2112 ± 40
	$N'_{7/2}$	N(1990)**	2016 ± 104
	$\Lambda'_{7/2}$	$\Lambda(2020)^*$	2094 ± 78
	$\Delta_{5/2}$	$\Delta(2000)^{**}$	1976 ± 237
$[70, 3^{-}]$	$N_{5/2}$	N(2200)**	2057 ± 180
	$N_{7/2}$	$N(2190)^{****}$	2160 ± 49
	$N'_{9/2}$	$N(2250)^{****}$	2239 ± 76
	$\Delta_{7/2}$	$\Delta(2200)^*$	2232 ± 87
	$^{1}\Lambda_{7/2}$	$\Lambda(2100)^{****}$	2100 ± 20
[70 , 5 ⁻]	$N_{11/2}$	N(2600)***	2638 ± 97

Global symmetries of QCD $U_B(I) \ge SU_L(3) \le SU_L(3) \ge SU_L(3) \ge SU_L(3) \ge SU_L(3) \ge SU_L(3) \le SU_L(3) \ge SU_L(3) \le SU_L(3) =$

SU(6) - dynamical symmetry only for baryons Must be non-relativistic at baryonic level What can explain it in QCD?

QCD expansion parameters

m_{u,d,s} I/N_c

 $I/N_c expansion SU_c (3) \rightarrow SU_c (N_c)$ Provides additional way of ordering non-perturbative QCD

Scalings in $N_{\mbox{\scriptsize c}}$

	Mesons	Baryons
Mass	N_c^0	N_c
Γ	$1/N_c$	N_c^0
coupling to pions	$N_c^{-n_{\pi}/2}$	$N_c^{(1-n_\pi)/2}$

SU(6) from consistency: Gervais & Sakita; Dashen & Manohar

Effective operators built with tensor products of generators

Effective coefficients

 $C_{n,i}(\overline{m}_q,q)$ contain the unknown QCD dynamics

$$C_{n,i} = \sum_{\nu=0} C_{n,i}(\nu) \left(\frac{1}{N_c}\right)^{\nu}$$

Masses of GS baryons

$$M_{GS} = c_1 N_c + \frac{c_{HF}}{N_c} (S^2 - \frac{3}{4}N_c) - c_S \frac{m_s - m_{u,d}}{\Lambda} S + \mathcal{O}(1/N_c^2; m_s/N_c)$$

Gursey-Radicati

Mass relation among 8 and 10

	$\Sigma - \Lambda = \mathcal{O}(m_s/N_c)$	$74 { m MeV}$
GMO	$\Xi_8 - \Sigma_8 = \frac{1}{2}(3\Lambda - \Sigma_8) - N$	128 vs 141 MeV
\mathbf{ES}	$\Sigma_{10} - \Delta = \Xi_{10} - \Sigma_{10}$	153 vs 145
"	$\Omega^ \Xi_{10} = \Xi_{10} - \Sigma_{10}$	142 vs 145
8-10	$\Sigma_{10} - \Sigma_8 = \Xi_{10} - \Xi_8$	212 vs 195

Excited baryons

Need to extend to $SU(6) \times O(3)$

Not a consequence of large $N_{\mbox{\tiny c}}$ but of phenomenology

$$[56, 0^+], [56, 2^+], [70, 1^-], etc$$

Masses

$$M = N_c M_0 + M_1 + \frac{1}{N_c} M_2 + \frac{m_s - m_{u,d}}{\Lambda} M_{SB} + \cdots$$

From mass analyses: BW masses from PDG

Subleading order of natural size (or smaller)
Hyperfine effects most important for SU(6) breaking
Numerous mass relations well satisfied in [56,2+]

Observations on masses

Quark mass dependencies of GS mass coefficients

Strong decays of 70-plet

JLG, Schat, Scoccola; JLG, Jayalath, Gonzalez, Scoccola

 $\mathcal{M}(\ell_{\pi}(Y_{\pi}, I_{\pi}), B, B^{*}) = (-1)^{\ell_{\pi}} \sqrt{2M_{B^{*}}} \frac{\sqrt{N_{c}}}{F_{\pi}} \langle B_{GS} \mid \mathbf{B}^{\ell_{\pi}(Y_{\pi}, I_{\pi})} \mid B^{*} \rangle$

$$\mathbf{B}^{\ell_{\pi},(Y_{\pi},I_{\pi})} = \left(\frac{k_{\pi}}{\Lambda}\right)^{\ell_{\pi}} \sum_{n} C_{n} O_{n}^{\ell_{\pi}(Y_{\pi},I_{\pi})}$$
$$O_{n}^{\ell_{\pi}(Y_{\pi},I_{\pi})} = \left[\xi^{\ell} \mathcal{G}_{n}^{j_{n}(Y_{\pi},I_{\pi})}\right]^{(\ell_{\pi}(Y_{\pi},I_{\pi}))}$$

PDG	State	Mass	Γ_T	BR	2 %	PDG	State	Mass	Γ_T	BI	3 %
Name		[MeV]	[MeV]	S - wave	D-wave	Name		[MeV]	[MeV]	S - wave	D – wave
N(1535)	$N_{1/2}$	1535(10)	150(25)	$N\pi: 45(10)$	$\Delta \pi < 1$	$\Sigma(1670)$	$\Sigma_{3/2}$	1675(10)	60(20)		$N\bar{K}:10(3)$
				$N\eta: 52.5(7.5)$							$\Lambda \pi : 10(5)$
N(1520)	$N_{3/2}$	1520(5)	113(12.5)	$\Delta \pi: 8.5(3.5)$	$N\pi:60(5)$						$\Sigma\pi:45(15)$
					$\Delta \pi : 12(2)$	$\Sigma(1750)$	$\Sigma'_{1/2}$	1765(35)	110(50)	$N\bar{K}:25(15)$	
N(1650)	$N'_{1/2}$	1657(13)	165(20)	$N\pi: 77.5(17.5)$	$\Delta \pi: 4(3)$					$\Sigma \pi < 8$	
				$N\eta: 6.5(3.5)$						$\Sigma\eta:35(20)$	
				$\Lambda K:7(4)$		$\Sigma(1775)$	$\Sigma_{5/2}$	1775(5)	120(15)		NK:40(3)
N(1700)	$N'_{3/2}$	1700(50)	100(50)		$N\pi:10(5)$,				$\Lambda \pi: 17(3)$
					$\Lambda K < 3$						$\Sigma\pi: 3.5(1.5)$
N(1675)	$N_{5/2}$	1675(5)	148(18)		$N\pi:40(5)$						$\Sigma^*\pi:10(2)$
					$\Lambda K < 1$	$\Delta(1620)$	$\Delta_{1/2}$	1630(30)	143(7.5)	$N\pi: 25(5)$	$\Delta \pi: 45(15)$
$\Lambda(1670)$	$\Lambda_{1/2}$	1670(10)	37.5(12.5)	$N\bar{K}: 25(5)$		$\Delta(1700)$	$\Delta_{3/2}$	1710(40)	300(100)	$\Delta \pi : 37.5(12.5)$	$N\pi:15(5)$
				$\Lambda \eta : 17.5(7.5)$							$\Delta \pi: 4(3)$
				$\Sigma\pi:40(15)$							
$\Lambda(1690)$	$\Lambda_{3/2}$	1690(5)	60(10)		NK: 25(5) $\Sigma = 20(10)$						
A (1000)	A /	1505(05)	200/100)		$\Sigma \pi : 30(10)$						
$\frac{\Lambda(1800)}{\Lambda(1800)}$	$\Lambda'_{1/2}$	1785(65)	300(100)	NK: 32.5(7.5)							
$\Lambda(1830)$	$\Lambda_{5/2}$	1820(10)	85(25)		NK: 6.5(3.5)		1		1 /N I		
					$\Sigma \pi : 55(20)$	Ana	IVSI	S TO	/ N	c and	I-DOQV
A (1405)	A //	1400(4)	F ()(0)	V 100	$2 \pi > 10$		/				
$\frac{\Lambda(1405)}{\Lambda(1520)}$	$\frac{\Lambda_{1/2}}{\Lambda_{1/2}}$	1400(4)	50(2)	$2\pi:100$			2) ト	nool	ling		
$\Lambda(1520)$	$\Lambda_{3/2}^{\prime\prime}$	1519(1)	15.6(1)		NK: 45(1)	JUC.	ノノし	リピタト			
					$\Sigma\pi:42(1)$				0		

Operator bases

S-wave: 3 LO, 2 NLO, 2 SU(3) breakers D-wave: 4 LO, 3 NLO, 1 SU(3) breaker

Mixing angle	θ_{N_1}	$ heta_{N_3}$	$ heta_{\Lambda_1}$	$ heta_{\Lambda_3}$	$ heta_{\Sigma_1}$	$ heta_{\Sigma_3}$
Decays	0.39	2.75	0.21	2.51	1.14	2.19
Decays + Masses	0.48	2.81	0.81	2.57	0.95	3.0
Decays + Masses + Photo - couplings	0.40	2.81	Gonz	alez & S	Scoccola	l

S-wave relations at LO

 $\frac{\tilde{\Gamma}(N(1535) \to N\pi) - \tilde{\Gamma}(N(1650) \to N\pi)}{\tilde{\Gamma}(N(1535) \to N\pi) + \tilde{\Gamma}(N(1650) \to N\pi)} = \frac{1}{5} (3\cos 2\theta_{N_1} - 4\sin 2\theta_{N_1}) \to \theta_{N_1} = 0.46(10) \text{ or } 1.76(10)$

 $\frac{\tilde{\Gamma}(N(1535)\to N\eta) - \tilde{\Gamma}(N(1650)\to N\eta)}{\tilde{\Gamma}(N(1535)\to N\eta) + \tilde{\Gamma}(N(1650)\to N\eta)} = \sin 2\theta_{N_1} \to \theta_{N_1} = 0.51(27)$

 $\tilde{\Gamma}(N(1535) \to N\pi) + \tilde{\Gamma}(N(1650) \to N\pi) = \tilde{\Gamma}(\Delta(1535) \to \Delta\pi) \quad 51(10) \ (th) \ vs \ 31(15) \ (exp)$

 $\frac{\Gamma(\Delta(1620) \to N\pi)}{\tilde{\Gamma}(\Delta(1700) \to \Delta\pi)} = 0.1 \ (th) \quad vs \quad 0.29(15) \ (exp)$

D-wave relations at LO

 $2\tilde{\Gamma}(\Delta(1620) \to \Delta\pi) + \tilde{\Gamma}(\Delta(1700) \to \Delta\pi) = 15\tilde{\Gamma}(\Delta(1620) \to N\pi) + 32\tilde{\Gamma}(\Delta(1700) \to N\pi)$ $5.9(1.9) \quad vs \quad 8.3(2.3)$

 $\tilde{\Gamma}(N(1535) \to \Delta \pi) + \tilde{\Gamma}(N(1650) \to \Delta \pi) + 11\tilde{\Gamma}(\Delta(1620) \to \Delta \pi) = 132\tilde{\Gamma}(\Delta(1700) \to N\pi) + 90\tilde{\Gamma}(N(1675) \to N\pi)$

32(11) vs 41(10)

S-wave Relation	Exp Test	D-wave Relation	Exp Test
$\frac{N(1650) \rightarrow \pi N}{N(1535) \rightarrow \eta N} = \frac{N(1535) \rightarrow \pi N}{N(1650) \rightarrow \eta N}$	$0.6 \pm 0.2 \ vs \ 4.4 \pm 4.0$	$\frac{N(1675) \rightarrow \pi N}{\Lambda(1830) \rightarrow \pi \Sigma} = 1$	0.92 ± 0.46
$\frac{N(1650) \to \eta N}{\Sigma(1750) \to \eta \Sigma} = 1$	0.12 ± 0.14	$\frac{\Sigma(1670) \to \pi\Lambda}{\Sigma(1670) \to \pi\Sigma} = 1/2$	0.12 ± 0.10
$\frac{N(1535) \rightarrow \eta N}{\Lambda(1670) \rightarrow \eta \Lambda} = 1$	5.4 ± 3.2	$\frac{\Sigma(1775) \to \pi\Lambda}{\Sigma(1775) \to \pi\Sigma} = 1/2$	3.1 ± 1.6
$\frac{\Delta(1620) \rightarrow \pi N}{\Delta(1700) \rightarrow \pi \Delta} = 2/5$	0.29 ± 0.15	$\frac{\Sigma(1775) \to \pi\Sigma}{\Sigma(1775) \to \pi\Sigma_{10}} = 8/7$	1.3 ± 0.6
$\frac{N(1535) \rightarrow \pi N}{\Lambda(1670) \rightarrow \pi \Sigma} = 1$	4.4 ± 2.5	$\frac{2\Delta(1620) \to \pi\Delta + \Delta(1700) \to \pi\Delta}{8\Delta(1700) \to \piN + N(1675) \to \piN} = 1$	2.9 ± 1.2
$\frac{N(1650) \rightarrow \pi N}{\Lambda(1670) \rightarrow n\Lambda} = \frac{\Lambda(1670) \rightarrow \pi \Sigma}{N(1650) \rightarrow nN}$	$2.1 \pm 0.9 vs 0.8 \pm 0.6$	$\frac{\frac{2}{9} N(1535) \to \pi\Delta + \frac{2}{9} N(1650) \to \pi\Delta + \frac{20}{3} \Delta(1620) \to \pi\Delta}{16\Delta(1700) \to \pi N + 15N(1675) \to \pi N} = 1$	2.6 ± 1.2
$\frac{N(1650) \to \pi N}{N(1535) \to \eta N} = \frac{N(1535) \to \pi N}{N(1650) \to \eta N}$	$0.6 \pm 0.2 vs 4.4 \pm 4.0$	$\frac{\frac{1}{36} N(1520) \to \pi N + \frac{1}{36} N(1700) \to \pi N + \frac{5}{12} \Delta(1620) \to \pi \Delta}{\Delta(1700) \to \pi N + N(1675) \to \pi N} = 1$	2.5 ± 1.2
$\frac{N(1535) \rightarrow \pi N}{N(1650) \rightarrow \pi N}$	$\theta_1 = 0.30 \pm 0.08 1.6 \pm 0.08$		
$\frac{N(1535) \rightarrow \pi N}{\Delta(1620) \rightarrow \pi N}$	$\theta_1 = 0.33 \pm 0.08 1.57 \pm 0.08$		
$\frac{N(1535) \rightarrow \eta N}{N(1650) \rightarrow \eta N}$	$\theta_1 = 0.68 \pm 0.14$ 1.22 ± 0.14	SU(3) breaking very impo	ortant
$\frac{N(1520) \rightarrow \pi\Delta}{\Delta(1700) \rightarrow \pi\Delta}$	$\theta_3 = 2.48 \pm 0.08 2.96 \pm 0.09$		

Two observations on decays

56-plets

$$\Gamma(N^*, \Delta^* \to N\eta, \Delta\eta) = \mathcal{O}(1/N_c^2)$$

70-plets

Strict large N_c $\theta_1 = \cos^{-1}(1/\sqrt{3}) = 54.7^o$ Phen : 23^o

 $N(1535) \nrightarrow N\pi$ $N(1535) \rightarrow N\eta$ $N(1650) \rightarrow N\pi$ $N(1650) \rightarrow N\eta$

2 pion channels

State	$N\pi\pi(\%)$	
$D_{13}(1520)$	40 - 50	
10()		$\Delta \pi \sim 15 - 20$
		$N_{0} \sim 15 - 25$
C (1650)	10 00	$10^{+0.10}$ 20
$S_{11}(1050)$	12 - 20	A 1 17
		$\Delta \pi \sim 1 - 7$
		$N\rho \sim 4 - 12$
		$N(1440)\pi < 5$
$D_{13}(1700)$	85 - 95	
		$\Delta \pi > 30$
		$N \rho \sim 7$
$D_{15}(1675)$	50 - 60	<u> </u>
D 13(1010)	00 00	$\Delta \pi \sim 50 - 60$
		$\frac{\Delta \pi}{\sqrt{2}} = \frac{1}{\sqrt{2}}$
C (1COO)	40 70	Np < 1 - 3
$S_{31}(1020)$	40 - 70	A 20 60
		$\Delta \pi \sim 30 - 60$
		$N(1440)\pi \sim 11$
$D_{33}(1700)$	80 - 90	
		$\Delta\pi\sim 30-60$
		$N\rho \sim 30-55$
		$N(1535)\pi \sim 4$
		•••
$P_{31}(1910)$	80 - 95	
01(-010)		$\Delta \pi \sim 6$
		$\frac{1}{Na} \sim 30$
		N(1440) - 56
$D_{(1000)}$	100	$10(1440)\pi \sim 30$
$P_{33}(1920)$	~ 100	A 17
		$\Delta \pi \sim 41$
		M(1F9F)
		$N(1535)\pi \sim 0$

Configuration mixings

Summary on I/N_c in baryons

- \bullet In principle, I/N_c gives rigorous connection to QCD
- An expansion for sorting out effects by magnitude
- In baryons it basically organizes how SU(6) symmetry is broken
- \bullet Gives relationships which are beyond dynamics at a given order in $1/N_c$ parameter independent relations, which serve as tests
- Important dynamical insight associated with small coefficients: small spin-orbit; small 3-body forces; dominance of I-body operators in strong decays and photocouplings
- Relevant dynamics is hidden in effective coefficients: both long and short distance effects
- It can be applied to lattice results (mass spectrum) which is very promising
- \bullet It should be no problem to implement I/N_c in phenomenological models used in PWA