S_{11} resonances in meson baryon production

M. Döring, K. Nakayama

FZ Jülich, University of Georgia

Narrow Nucleon Resonances 2009:
Predictions, Evidences, Perspectives
Resonances in πN scattering

The Jülich model of meson exchange.

| N^* (1535) S_{11} | Re z_0 [MeV] | -2 Im z_0 [MeV] | $|R|$ [MeV] | θ [deg] |
|----------------------|----------------|-------------------|----------|------------|
| ARN | 1519 | 129 | 31 | -3 |
| HOE | 1502 | 95 | 16 | -16 |
| CUT | 1510±50 | 260±80 | 120±40 | +15±45 |

| N^* (1650) S_{11} | Re z_0 [MeV] | -2 Im z_0 [MeV] | $|R|$ [MeV] | θ [deg] |
|----------------------|----------------|-------------------|----------|------------|
| ARN | 1669 | 136 | 54 | -44 |
| HOE | 1648 | 80 | 14 | -69 |
| CUT | 1640±20 | 150±30 | 60±10 | -75±25 |

| N^* (1720) P_{13} | Re z_0 [MeV] | -2 Im z_0 [MeV] | $|R|$ [MeV] | θ [deg] |
|----------------------|----------------|-------------------|----------|------------|
| ARN | 1663 | 212 | 14 | -82 |
| HOE | 1666 | 355 | 25 | -94 |
| CUT | 1680±30 | 120±40 | 8±12 | -160±30 |

| $\Delta (1232) P_{33}$ | Re z_0 [MeV] | -2 Im z_0 [MeV] | $|R|$ [MeV] | θ [deg] |
|-----------------------|----------------|-------------------|----------|------------|
| ARN | 1218 | 90 | 47 | -37 |
| HOE | 1211 | 99 | 52 | -47 |
| CUT | 1210±1 | 100±2 | 53±2 | -47±1 |

| $\Delta^*(1620) S_{31}$ | Re z_0 [MeV] | -2 Im z_0 [MeV] | $|R|$ [MeV] | θ [deg] |
|------------------------|----------------|-------------------|----------|------------|
| ARN | 1593 | 72 | 12 | -108 |
| HOE | 1595 | 135 | 15 | -92 |
| CUT | 1600±15 | 120±20 | 15±2 | -110±20 |

| $\Delta^*(1700) D_{33}$ | Re z_0 [MeV] | -2 Im z_0 [MeV] | $|R|$ [MeV] | θ [deg] |
|------------------------|----------------|-------------------|----------|------------|
| ARN | 1637 | 236 | 16 | -38 |
| HOE | 1632 | 253 | 18 | -40 |
| CUT | 1651 | 159 | 10 | |

| $\Delta^*(1910) P_{31}$ | Re z_0 [MeV] | -2 Im z_0 [MeV] | $|R|$ [MeV] | θ [deg] |
|------------------------|----------------|-------------------|----------|------------|
| ARN | 1840 | 221 | 12 | -153 |
| HOE | 1771 | 479 | 45 | +172 |
| CUT | 1874 | 283 | 38 | |

No pole term in the potential for the Roper; still a pole in the complex plane.
The $N^*(1535)$ as a dynamically generated resonance

- From the resonance picture to multiple rescattering:

- $(0^-)_M \otimes (1/2^+)_B$ in $SU(3)$: Coupled channels in $S = Q = 0$ are $\pi N, \eta N, K\Sigma, K\Lambda$.

- Interaction from the LO chiral Lagrangian: (Isovector) Weinberg-Tomozawa interaction.

- Unitarization through the Bethe-Salpeter equation

\[T = (1 - VG)^{-1} V. \]

- $N^*(1535)$: Quasi-bound $K\Lambda, K\Sigma$ state
Photon coupling to the $N^*(1535)$
[Talk K. Nakayama on the ECT* PWA meeting, Trento June 2009]

Electromagnetic properties provide independent tests, because the couplings of the photon to the constituents of the resonances are well known. Parameter-free predictions are possible.
Additional degrees of freedom
Phase problem as explained in K. Nakayama's talk on the ECT* PWA Workshop Trento 06/2009.

- The $N^*(1650)$: Closeby resonance with the $N^*(1535)$’s quantum numbers → interfering resonances
- Could the $N^*(1535)$ be genuine? → put it as a resonance!
- → Include two genuine pole terms $\delta V_{ij} \sim \frac{g_i g_j}{\sqrt{s-M}}$ in the potential.
- Consider all available data on pion- and photon-induced reactions.
- Adjust the parameters: subtraction constants, couplings of the genuine resonances.
- With the following results:
Pole structure
Schematic picture; explained in greater detail in K. Nakayama’s talk, ECT*/Trento/06/2009.

Implications for fits using subthreshold resonances:
The $N^*(1535)$ may be gone!
$\pi N \rightarrow \pi N$

Real part and imaginary part of S_{11} and S_{31} as functions of $s^{1/2}$ in MeV.
\(\pi N \rightarrow \pi N \) at low energies

Refit; no genuine resonance terms.
\(\gamma p \rightarrow \pi^0 p \) at threshold

\[
E_{0^+} (\pi^0 p) \left(10^3 / m_{\pi^+}\right) \quad \text{vs.} \quad E_\gamma \ [\text{MeV}]
\]

- Re \(E_{0^+} \) shifted by -0.59
- corresponds to 10% change in Re phototransi. loop

Present model: Re \(E_{0^+} \) shifted by -0.59
corresponds to 10% change in Re phototransi. loop

References:
- PRL 87, 232501 (2001)
- PRC 55, 2016 (1997) [Im: gray band]
- PRC 53, R1052 (1996)
- Maid 2007 [EPJA 34,69]
- ChPT [ZPhys C70, 483 (1996)]
- DR [PLB 399,13]
- Present model

Edinburgh 06/10/2009

\(S_{11} \) resonances...
\(\gamma N \rightarrow \pi N \)

\[S_{11} (p) \]

\[S_{11} (n) \]

\[S_{31} \]
\(\eta \) related quantities

\[\gamma p \rightarrow \eta p \]

\[\gamma n \rightarrow \eta n \]

\[\pi^+ n \rightarrow \eta p \]

\[\pi^- p \rightarrow \eta n \]

\[\eta p \rightarrow \eta p \]

\[\eta n \rightarrow \eta n \]

\[\pi N \rightarrow \eta N \]

\[E_{0+} \text{ amplitudes: ETA MAID, } S_{11} (\eta N): \text{ Arndt} \]
\(\eta \) related quantities

\[\sigma [\text{mb}] \]

- \(\gamma p \rightarrow \eta p \)
- \(\gamma n \rightarrow \eta n \)
- \(\pi^+ n \rightarrow \eta p \)
- \(\pi^- p \rightarrow \eta n \)
- \(\pi N \rightarrow \eta N \)

\(E_{0+} \) amplitudes: ETA MAID, \(S_{11} (\eta N) \): Arndt

Edinburgh 06/10/2009
The ratio \[\frac{\sigma(\gamma n \rightarrow \eta n)}{\sigma(\gamma p \rightarrow \eta p)} \] Fermi motion not yet included.

Intermediate states in photon loops, \(Q = 0, 1 \):
- \(\pi^- p, \pi^0 n, \eta n, K^0 \Lambda, K^+ \Sigma^-, K^0 \Sigma^0 \)
- \(\pi^0 p, \pi^+ n, \eta p, K^+ \Lambda, K^+ \Sigma^0, K^0 \Sigma^+ \)

\[
a^-_1 = g^\gamma g_j, \quad g^\gamma = \sum_{i=1}^{6} \tilde{\Gamma}^i g_i, \\
i \tilde{M}_{PA} = \frac{a^-_1}{z - z_0}.
\]
The ratio \(\frac{\sigma(\gamma n \rightarrow \eta n)}{\sigma(\gamma p \rightarrow \eta p)} \) Fermi motion not yet included.

Intermediate states in photon loops, \(Q = 0, 1 \):

- \(\pi^- p, \pi^0 n, \eta n, K^0 \Lambda, K^+ \Sigma^-, K^0 \Sigma^0 \)
- \(\pi^0 p, \pi^+ n, \eta p, K^+ \Lambda, K^+ \Sigma^0, K^0 \Sigma^+ \)

\(a_{-1} = g_\gamma g_j, \quad g_\gamma = \sum_{i=1}^{6} \tilde{\Gamma}^i g_i, \)

\(i \tilde{M}_{PA} = \frac{a_{-1}}{z - z_0}. \)
The ratio \(\frac{\sigma(\gamma n \rightarrow \eta n)}{\sigma(\gamma p \rightarrow \eta p)} \) Fermi motion not yet included.

- Intermediate states in photon loops, \(Q = 0, 1 \):
 - \(\pi^- p, \pi^0 n, \eta n, K^0 \Lambda, K^+ \Sigma^- , K^0 \Sigma^0 \)
 - \(\pi^0 p, \pi^+ n, \eta p, K^+ \Lambda, K^+ \Sigma^0 , K^0 \Sigma^+ \)

- Intermediate states in photon loops, \(Q = 0, 1 \):
 - \(\pi^- p, \pi^0 n, \eta n, K^0 \Lambda, K^+ \Sigma^- , K^0 \Sigma^0 \)
 - \(\pi^0 p, \pi^+ n, \eta p, K^+ \Lambda, K^+ \Sigma^0 , K^0 \Sigma^+ \)

\[
a_{-1}^\gamma = g_\gamma g_j, \quad g_\gamma = \sum_{i=1}^{6} \tilde{\Gamma}^i g_i,
\]

\[
i \tilde{M}_P^A = \frac{a_{-1}^\gamma}{z - z_0}.
\]
The ratio \(\frac{\sigma(\gamma n \rightarrow \eta n)}{\sigma(\gamma p \rightarrow \eta p)} \) Fermi motion not yet included.

- Intermediate states in photon loops, \(Q = 0, 1 \):
 - \(\pi^- p, \pi^0 n, \eta n, K^0 \Lambda, K^+ \Sigma^-, K^0 \Sigma^0 \)
 - \(\pi^0 p, \pi^+ n, \eta p, K^+ \Lambda, K^+ \Sigma^0, K^0 \Sigma^+ \)

\[
\begin{align*}
a_{-1}^\gamma &= g_{\gamma} g_{j}, & g_{\gamma} &= \sum_{i=1}^{6} \tilde{\Gamma}^i g_i, \\
i \tilde{M}^{PA} &= \frac{a_{-1}^\gamma}{z - z_0}.
\end{align*}
\]

- \(SU(3) \) loop structure explains naturally the excess in \(\sigma_n \).
The ratio \(\frac{\sigma(\gamma n \rightarrow \eta n)}{\sigma(\gamma p \rightarrow \eta p)} \) Fermi motion not yet included.

- Intermediate states in photon loops, \(Q = 0, 1 \):
 - \(\pi^- p, \pi^0 n, \eta n, K^0 \Lambda, K^+ \Sigma^-, K^0 \Sigma^0 \)
 - \(\pi^0 p, \pi^+ n, \eta p, K^+ \Lambda, K^+ \Sigma^0, K^0 \Sigma^+ \)

\[a_{-1}^\gamma = g_\gamma g_j, \quad g_\gamma = \sum_{i=1}^{6} \tilde{\Gamma}^i g_i, \]

\[i\tilde{M}^{PA} = \frac{a_{-1}^\gamma}{z - z_0}. \]

- \(SU(3) \) loop structure explains naturally the excess in \(\sigma_n \).
Remarks on σ_n/σ_p

- Full $SU(3)$ structure appears in intermediate photon loops of the $U\chi PT$ model (not considered in many phenomenological models).
- Structure in σ_n/σ_p appears from coupling of the γ to the $K\Lambda$ intermediate state (in interference with all other SU(3) allowed states).
- This is connected to:
 - Strong coupling of the S_{11} partial wave to $K\Lambda$, $K\Sigma$, ηN...
 - One of the consequences being a dynamically generated $N^*(1535)$, but rather think of an energy dependent amplitude.
- The excess in $\sigma_n \equiv \sigma(\gamma n \rightarrow \eta n)$ appears as a pure interference effect in S_{11}, from 1535 and 1650, but – more important – intermediate photon loops with full $SU(3)$ structure. Signs of this have always been there.
- The excess in σ_n appears qualitatively in different coupled channel models that comprise SU(3) structure plus unitarization. It appears in fits where σ_n/σ_p is not included (the rest is fine tuning). $\pi\pi N$ in ηN production.
- Full rise and fall in σ_n/σ_p appears after including the $N^*(1650)$.
- Isospin limit, no genuine states, only πN photon loop: $\sigma_n/\sigma_p \equiv 1$.
\(\gamma N \rightarrow KY \)

\[\pi N \rightarrow KY \text{ of similar quality} \]

- \(\gamma p \rightarrow K^+ \Lambda \)
- \(\gamma p \rightarrow K^+ \Sigma^0 \)
- \(\gamma p \rightarrow K^0 \Sigma^+ \)

Data: SPAHIR, \(E_{0^+} \): KAON-MAID, brown dotted lines: Background diagrams (real)
Properties of the present solution

- Combined analysis of reactions in S_{11} and S_{31}, for
 - πN and γN initial state.
 - πN, ηN, $K\Lambda$, $K\Sigma$ final state.

- Features of the solution (decided by the fit):
 - Dynamically generated $N^*(1535)$.
 - Genuine pole term for the $N^*(1650)$ (resonance interference with $N^*(1535)$).
 - Second genuine pole far in complex plane produces small background instead of replacing the $N^*(1535)$. Mostly needed for missing t channel meson exchange with anomalous photon couplings.
 - Dynamical generation of virtual state close to threshold. May be genuine or “mock up” of subthreshold cuts.
 - Some need for higher chiral interactions at low energies is seen (too much strengths below the ηN threshold); $\pi\pi N$ channel could be included.

- Simultaneous description of different ηN cusps (forms, strengths) and $N^*(1535)$ phases in $S_{11}(\pi N \rightarrow \pi N)$, $E_{0+}(\gamma p)$, $E_{0+}(\gamma n)$.

- Photon coupling to intermediate πN, $K\Lambda$, $K\Sigma$ can explain σ_n/σ_p in $\gamma N \rightarrow \eta N$.
Previous results
The rise in σ_n/σ_p observed in different models.

The rise has been observed in previous models that comprise the full space of SU(3) allowed channels. No Fermi motion included.
Necessary inelasticity from $\pi\pi N$ to bring the cross section in $\pi N \rightarrow \eta N$ down from $3.5 \mu b$; consequence of unitarity and inelasticity [Argument by C. Hanhart].
\[\pi N \rightarrow KY \]
Pole positions and coupling strengths

<table>
<thead>
<tr>
<th></th>
<th>previous</th>
<th>Fit 2</th>
<th>global</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N^* (1535))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_0) [MeV]</td>
<td>(1537 - 37 i)</td>
<td>(1537 - 139 i)</td>
<td>(1508 - 108 i)</td>
</tr>
<tr>
<td>(g_{K^0 \Sigma^-})</td>
<td>(2.20 - 0.17 i)</td>
<td>(2.66 - 0.91 i)</td>
<td>(2.33 - 0.72 i)</td>
</tr>
<tr>
<td>(g_{K^0 \Sigma^0})</td>
<td>(-1.56 + 0.12 i)</td>
<td>(-1.90 + 0.64 i)</td>
<td>(-1.66 + 0.51 i)</td>
</tr>
<tr>
<td>(g_{K^0 \Lambda})</td>
<td>(1.39 - 0.08 i)</td>
<td>(0.94 - 0.55 i)</td>
<td>(1.04 - 0.43 i)</td>
</tr>
<tr>
<td>(g_{\pi^- p})</td>
<td>(0.56 + 0.33 i)</td>
<td>(1.42 + 0.46 i)</td>
<td>(1.04 + 0.39 i)</td>
</tr>
<tr>
<td>(g_{\pi^0 n})</td>
<td>(-0.39 - 0.24 i)</td>
<td>(-1.00 - 0.33 i)</td>
<td>(-0.73 - 0.28 i)</td>
</tr>
<tr>
<td>(g_{\eta n})</td>
<td>(-1.45 + 0.44 i)</td>
<td>(-2.42 + 1.05 i)</td>
<td>(-2.50 + 1.19 i)</td>
</tr>
<tr>
<td>(N^* (1650))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z_0) [MeV]</td>
<td>(1655 - 59 i)</td>
<td>(1662 - 59 i)</td>
<td></td>
</tr>
<tr>
<td>(g_{K^0 \Sigma^-})</td>
<td></td>
<td>(0.79 + 0.65 i)</td>
<td>(0.92 + 0.34 i)</td>
</tr>
<tr>
<td>(g_{K^0 \Sigma^0})</td>
<td>(-0.56 - 0.47 i)</td>
<td>(-0.65 - 0.24 i)</td>
<td></td>
</tr>
<tr>
<td>(g_{K^0 \Lambda})</td>
<td>(-0.49 + 0.91 i)</td>
<td>(-0.60 + 0.90 i)</td>
<td></td>
</tr>
<tr>
<td>(g_{\pi^- p})</td>
<td>(-0.89 + 0.48 i)</td>
<td>(-0.75 + 0.21 i)</td>
<td></td>
</tr>
<tr>
<td>(g_{\pi^0 n})</td>
<td>(0.63 - 0.34 i)</td>
<td>(0.54 - 0.15 i)</td>
<td></td>
</tr>
<tr>
<td>(g_{\eta n})</td>
<td>(-0.08 + 0.32 i)</td>
<td>(0.26 + 0.77 i)</td>
<td></td>
</tr>
</tbody>
</table>