Excited state meson and baryon spectroscopy from Lattice QCD

Robert Edwards
Jefferson Lab

PWA 2011

Collaborators:
J. Dudek, B. Joo, D. Richards, S. Wallace
Auspices of the Hadron Spectrum Collaboration
Lattice QCD

Goal: resolve highly excited states

$N_f = 2 + 1 \ (u,d + s)$

Anisotropic lattices:

$(a_s)^{-1} \sim 1.6 \text{ GeV}, \ (a_t)^{-1} \sim 5.6 \text{ GeV}$
Spectrum from variational method

Two-point correlator

\[C(t) = \langle 0 | \Phi'(t) \Phi(0) | 0 \rangle \]

\[C(t) = \sum_n e^{-E_n t} \langle 0 | \Phi'(0) | n \rangle \langle n | \Phi(0) | 0 \rangle \]

Matrix of correlators

\[
C(t) = \begin{bmatrix}
\langle 0 | \Phi_1(t) \Phi_1(0) | 0 \rangle & \langle 0 | \Phi_1(t) \Phi_2(0) | 0 \rangle & \cdots \\
\langle 0 | \Phi_2(t) \Phi_1(0) | 0 \rangle & \langle 0 | \Phi_2(t) \Phi_2(0) | 0 \rangle & \cdots \\
& & \ddots
\end{bmatrix}
\]

Diagonalize:
- eigenvalues \(\rightarrow \) spectrum
- eigenvectors \(\rightarrow \) spectral “overlaps”

Each state optimal combination of \(\Phi_i \)

\[\Omega_n = v_1^n \Phi_1 + v_2^n \Phi_2 + \ldots \]

Benefit: orthogonality for near degenerate states
Operator construction

Baryons: permutations of 3 objects

Permutation group S_3: 3 representations

- **Symmetric**: 1-dimensional
 - e.g., uud+udu+duu
- **Antisymmetric**: 1-dimensional
 - e.g., uud-udu+duu-...
- **Mixed**: 2-dimensional
 - e.g., udu - duu & 2duu - udu - uud

Color antisymmetric \rightarrow Require Space [Flavor Spin] symmetric

Classify operators by these permutation symmetries:
- Leads to rich structure
Couple derivatives onto single-site spinors: Enough D’s – build any J,M

\[\mathcal{O}^{JM} \leftarrow (CGC')_{i,j,k} \left(\vec{D} \right)_{i} \left(\vec{D} \right)_{j} [\Psi]_{k} \]

Only using symmetries of continuum QCD

Operators \leftarrow Derivatives

Use all possible operators up to 2 derivatives (transforms like 2 units orbital angular momentum)

1104.5152
Baryon operator basis

3-quark operators with up to two covariant derivatives – projected into definite isospin and continuum \(J^P \)

Operators \(\left(\begin{array}{cc} \text{Flavor} & \text{Dirac} \\ \text{Space} & \text{symmetry} \end{array} \right)^{J^P} \)

Spatial symmetry classification:

Nucleons: \(N^{2S+1L_{\pi}} J^P \)

Symmetry crucial for spectroscopy

By far the largest operator basis ever used for such calculations

<table>
<thead>
<tr>
<th>(J^P)</th>
<th>#ops</th>
<th>E.g., spatial symmetries</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J=1/2^-)</td>
<td>24</td>
<td>(N^2P_M \frac{1}{2}^-), (N^4P_M \frac{1}{2}^-)</td>
</tr>
<tr>
<td>(J=3/2^-)</td>
<td>28</td>
<td>(N^2P_M 3/2^-), (N^4P_M 3/2^-)</td>
</tr>
<tr>
<td>(J=5/2^-)</td>
<td>16</td>
<td>(N^4P_M 5/2^-)</td>
</tr>
<tr>
<td>(J=1/2^+)</td>
<td>24</td>
<td>(N^2S_{S \frac{1}{2}^+}), (N^2S_{M \frac{1}{2}^+}), (N^4D_{M \frac{1}{2}^+}), (N^2P_{A \frac{1}{2}^+})</td>
</tr>
<tr>
<td>(J=3/2^+)</td>
<td>28</td>
<td>(N^2D_{S3/2^+}), (N^2D_{M3/2^+}), (N^2P_{A3/2^+}), (N^4S_{M3/2^+}), (N^4D_{M3/2^+})</td>
</tr>
<tr>
<td>(J=5/2^+)</td>
<td>16</td>
<td>(N^2D_{S5/2^+}), (N^2D_{M5/2^+}), (N^4D_{M5/2^+})</td>
</tr>
<tr>
<td>(J=7/2^+)</td>
<td>4</td>
<td>(N^4D_{M7/2^+})</td>
</tr>
</tbody>
</table>
Operators are not states

Two-point correlator

\[C(t) = \langle 0 | \Phi'(t) \Phi(0) | 0 \rangle \]

\[C(t) = \sum_n e^{-E_n t} \langle 0 | \Phi'(0) | n \rangle \langle n | \Phi(0) | 0 \rangle \]

Full basis of operators: many operators can create same state

Spectral “overlaps”

\[\langle n; J^P | \Phi_i | 0 \rangle = Z_i^n \]

States may have subset of allowed symmetries
Spin identified Nucleon & Delta spectrum

Statistical errors < 2%

$m_\pi \sim 520\text{MeV}$
arXiv:1104.5152
Spin identified Nucleon & Delta spectrum

SU(6) x O(3) counting
No parity doubling

$\rho \approx 520\text{MeV}$
Spin identified Nucleon & Delta spectrum

Discern structure: spectral overlaps

\[m_\pi \sim 520\text{MeV} \]

\[\begin{align*}
N^* & \quad \begin{cases}
\mathcal{P}_{1/2}^4, \mathcal{P}_{3/2}^4, \mathcal{P}_{5/2}^4, \\
\mathcal{P}_{1/2}^2, \mathcal{P}_{3/2}^2, \mathcal{P}_{5/2}^2,
\end{cases} \\
\mathcal{S}_{1/2}^2 & \quad \begin{cases}
\mathcal{P}_{1/2}^4, \mathcal{P}_{3/2}^4, \mathcal{P}_{5/2}^4, \\
\mathcal{P}_{1/2}^2, \mathcal{P}_{3/2}^2, \mathcal{P}_{5/2}^2,
\end{cases}
\end{align*} \]

\[\begin{align*}
\Delta^* & \quad \begin{cases}
\mathcal{P}_{1/2}^2, \mathcal{P}_{3/2}^2, \mathcal{P}_{5/2}^3, \\
\mathcal{P}_{1/2}^5, \mathcal{P}_{3/2}^5, \mathcal{P}_{5/2}^5,
\end{cases} \\
\mathcal{S}_{3/2}^4 & \quad \begin{cases}
\mathcal{P}_{1/2}^2, \mathcal{P}_{3/2}^2, \mathcal{P}_{5/2}^3, \\
\mathcal{P}_{1/2}^5, \mathcal{P}_{3/2}^5, \mathcal{P}_{5/2}^5,
\end{cases}
\end{align*} \]

[56,0\text{^{-}}] S-wave

[70,1\text{^{-}}] P-wave

[56,0\text{^{+}}] S-wave

[70,1\text{^{-}}] P-wave

arXiv:1104.5152
Nucleon J^-

Overlaps

$Z_i^n = \langle J^- | \Phi_i | 0 \rangle$

Little mixing in each J^-

Nearly "pure" [S= 1/2 & 3/2] 1^-

Thomas Jefferson National Accelerator Facility
Discern structure: spectral overlaps

Significant mixing in J^+

13 levels/ops

8 levels/ops

N^*

Δ^*

$N=2$ J^+ Nucleon & Delta spectrum
Near degeneracy in $\frac{1}{2}^+$ consistent with SU(6) O(3) but heavily mixed

Discrepancies??
Operator basis – spatial structure

What else? Multi-particle operators
Spectrum of finite volume field theory

Missing states: “continuum” of multi-particle scattering states

- Infinite volume: continuous spectrum
 \[E(p) = 2\sqrt{m^2_\pi + p^2} \]

- Finite volume: discrete spectrum

Deviation from (discrete) free energies depends upon interaction - contains information about scattering phase shift

\[\Delta E(L) \leftrightarrow \delta(E) : \text{Lüscher method} \]
The idea: 1 dim quantum mechanics

Two spin-less bosons: \(\psi(x,y) = f(x-y) \)

\[
\left[-\frac{1}{m} \frac{d^2}{dz^2} + V(z) \right] f(z) = E f(z)
\]

Solutions \(f(z) \rightarrow \cos [k|z| + \delta(k)] \) \(E = k^2/m \)

Quantization condition when \(-L/2 < z < L/2\)

\(kL + 2\delta(k) = 0 \mod 2\pi \)

Same physics in 4 dim version, but messier
Provable in a QFT
Finite volume scattering

Lüscher method
-scattering in a periodic cubic box (length L)
-finite volume energy levels $E(L) \rightarrow \delta(E)$

E.g. just a single elastic resonance

At some L, have discrete excited energies

\[\pi \pi \rightarrow \rho \rightarrow \pi \pi \]
\[\pi N \rightarrow \Delta \rightarrow \pi N \]
I=1 $\pi\pi$: the "ρ"

Extract $\delta_1(E)$ at discrete E

Extracted coupling: stable in pion mass

Stability a generic feature of couplings??

Feng, Jansen, Renner, 1011.5288
What is a form-factor off of a resonance?

What is a resonance? Spectrum first!

Extension of scattering techniques:
- Finite volume matrix element modified

\[
\langle N|J_\mu|N^*\rangle_\infty(Q^2,E) \leftarrow [\delta'(E) + \Phi'(E)] \langle N|J_\mu|N^*\rangle_{\text{volume}}
\]

Requires excited level transition FF’s: some experience
- Charmonium E&M transition FF’s (1004.4930)
- Nucleon 1st attempt: “Roper”->N (0803.3020)

Range: few GeV^2
Limitation: spatial lattice spacing
Some candidates: determine phase shift
Somewhat elastic

$m_\pi \sim 400$ MeV
Isoscalars: flavor mixing determined

Will need to build PWA within mesons

Exotics

$m_{\pi} = 396$ MeV
-isoscalar
-isovector

YM glueball

1102.4299
Prospects

• Strong effort in excited state spectroscopy
 - New operator & correlator constructions → high lying states
• Results for baryon excited state spectrum:
 - No “freezing” of degrees of freedom nor parity doubling
 - Broadly consistent with non-relativistic quark model
 - Add multi-particles → baryon spectrum becomes denser
• Short-term plans: resonance determination!
 - Lighter pion masses (230MeV available)
 - Extract couplings in multi-channel systems
 - This includes π, η, K in final states
• Form-factors:
 - Use previous resonance parameters: initially, $Q^2 \sim \text{few GeV}^2$
Backup slides

• The end
Baryon Spectrum

“Missing resonance problem”
• What are collective modes?
• What is the structure of the states?

Nucleon Mass Spectrum (Exp): 4*, 3*, 2*

PDG uncertainty on B-W mass

Nucleon spectrum
Finite volume scattering: Lüscher method

Excited state spectrum at a single volume

Do more volumes, get more points

Discrete points on the phase shift curve

energy levels
L ~ 2.9 fm

L ~ 2.9 fm
The interpretation

DOTS: Finite volume QCD energy eigenvalues

LINES: Non-interacting two-particle states have known energies

\[
E(p) = 2 \sqrt{m_\pi^2 + n \left(\frac{2\pi}{L}\right)^2}
\]

“non-interacting basis states”

\[
\begin{align*}
|q\bar{q}\rangle & \quad |\pi\pi_{100}\rangle \\
& \quad |\pi\pi_{110}\rangle \\
& \quad |\pi\pi_{111}\rangle
\end{align*}
\]

Level repulsion - just like quantum mechanical pert. theory
The interpretation

\[\sim \sqrt{1} |q\bar{q}\rangle - \sqrt{0.9} |\pi\pi_{100}\rangle \]

\[\sim \sqrt{0.9} |q\bar{q}\rangle + \sqrt{1} |\pi\pi_{100}\rangle \]
Phase Shifts demonstration: $I=2$ $\pi\pi$

$\pi\pi$ isospin=2

Extract $\delta_0(E)$ at discrete E

No discernible pion mass dependence

1011.6352 (PRD)
Phase Shifts: demonstration

$\pi\pi$ isospin=2

$\delta_2(E)$

Graph showing $\delta_2(\epsilon)$ against k^2 / GeV^2. The graph includes data points for different energies with error bars, indicating measurements at 524 MeV, 444 MeV, and 396 MeV. Different energy levels are represented by symbols and colors: blue squares for 16^3, green triangles for 16^3, blue circles for 20^3, green diamonds for 20^3, red triangles for 24^3, and red circles for 24^3. The graph also includes a legend for data sets: Hoogland, Losty, Cohen, and Durusoy.
Extract $\delta_0(E)$ and $\delta_2(E)$ at discrete E.