Pion photoproduction
in a dynamical coupled-channels model

Fei Huang
Department of Physics and Astronomy, The University of Georgia, USA

Collaborators:
K. Nakayama (UGA), H. Haberzettl (GWU)
M. Döring, Ulf-G. Meißner (Bonn U.)
J. Haidenbauer, C. Hanhart, S. Krewald (FZ-Jülich)

May 23, 2011
Outline

- Introduction
- Jülich πN dynamical coupled-channels model
 - Dynamical model ingredients
 - πN partial wave amplitudes from Jülich model
- π photoproduction
 - Photoproduction amplitudes
 - Gauge invariance
 - Cross sections & photon spin asymmetries
 - Multipole amplitudes & target asymmetries
- Summary & perspectives
Methodology for N^* study

There are lots of high precision data from JLab, MIT-Bates, BNL-LEGS, Mainz-MAMI, Bonn-ELSA, GRAAL, Spring-8, et al.

N^*’s are unstable and couple strongly to baryon-meson states

Build coupled-channels meson-baryon reaction models to

- analyze the meson production data
- extract N^* parameters
- understand the reaction mechanisms
- understand the structures and dynamical origins of N^*

Most widely used models: K matrix approximation, chiral unitary approach, dynamical coupled-channels model, et al.
Dynamical model ingredients

(a) $T |F\rangle S \langle F| + X$
(b) $T = V + V G_0 T$
(c) $V = |f\rangle S_0 \langle f| + U$
(d) $X = U + U G_0 X$

T: full amplitude
S: dressed res. propagator
S_0: bare res. propagator
$|F\rangle$: dressed res. vertex
$|f\rangle$: bare res. vertex

(a) $S = S_0 + S \langle F| G_0 |f\rangle S_0$
(b) $|F\rangle = |f\rangle + X G_0 |f\rangle$

The George-Washington University, USA
Pion photoproduction
May 23, 2011 4 / 19
Jülich model: $\pi N \rightarrow \pi N$ [Solution 2002]

$\pi N \oplus \eta N \oplus \pi \Delta \oplus \rho N \oplus \sigma N$

$S_{11}(1535), \ S_{11}(1650), \ S_{31}(1620), \ P_{31}(1910), \ P_{13}(1720), \ D_{13}(1520), \ P_{33}(1232), \ D_{33}(1700)$ (all are 4-star N^*’s)
To get M^μ & J^μ, attach a photon everywhere to

\[M^\mu = M_s^\mu + M_u^\mu + M_t^\mu + M_{int} \]
Gauge invariance

- In a full theory (no form factors & truncations), gauge invariance is respected (minimum coupling, \(\partial_\mu \rightarrow D_\mu \equiv \partial_\mu + ieA_\mu(x) \))

- Real-world calculations require form factors & truncations

- Inclusion form factors will destroy gauge invariance, since form factors are usually functions of the momenta of exchanged particles

- Truncations usually also destroy gauge invariance

- The vast majority of existing models does not satisfy gauge invariance

- Our model is gauge invariant \(\iff \) we introduce a prescription to restore gauge invariance
Prescription to restore gauge invariance

\[M^\mu = M^\mu_s + M^\mu_u + M^\mu_i + M^\mu_{int} \]

\[M^\mu_c \equiv m^\mu_{KR} + U^\mu G_0 |F\rangle + X G_0 (M^\mu_u + M^\mu_i + m^\mu_{KR} + U^\mu G_0 |F\rangle)_L \]

\[M^\mu_{int} = M^\mu_c + X G_0 (M^\mu_u + M^\mu_i + M^\mu_c)_T \]

Generalized Ward-Takahashi Identity (GWTI) for \(M^\mu \)

\[k_\mu M^\mu = - |F_s\tau\rangle S_{p+k} Q_i S_p^{-1} + S_{p'}^{-1} Q_f S_{p'-k} |F_u\tau\rangle + \Delta_{p-p'+k}^{-1} Q_\pi \Delta_{p-p'} |F_t\tau\rangle \]

Constraints on \(M^\mu_c \) & \(M^\mu_{int} \)

\[k_\mu M^\mu_c \equiv k_\mu M^\mu_{int} = - |F_s\tau\rangle Q_i + Q_f |F_u\tau\rangle + Q_\pi |F_t\tau\rangle \]
Choosing the generalized contact current M^μ_c

- Constraints: gauge invariance; contact term; crossing symmetry

Choosing the generalized contact current M^μ_c as

$$M^\mu_c = -g_\pi \gamma_5 \left\{ \left[\lambda + (1 - \lambda) \frac{q}{2m} \right] C^\mu + (1 - \lambda) \frac{\gamma^\mu}{2m} e_\pi f_i \right\}$$

$$C^\mu = e_\pi \frac{(2q - k)^\mu}{t - q^2} \left(f_i - \hat{F} \right) + e_f \frac{(2p' - k)^\mu}{u - p'^2} \left(f_u - \hat{F} \right) + e_i \frac{(2p + k)^\mu}{s - p^2} \left(f_s - \hat{F} \right)$$

$$\hat{F} = 1 - \hat{h} (1 - \delta_s f_s) (1 - \delta_u f_u) (1 - \delta_t f_t)$$

k, p, q, p': 4-momenta for incoming γ, N & outgoing π, N

\hat{h}: fit parameter

f_x: form factors for corresponding channels

Check gauge invariance:

$$k^\mu M^\mu_c = - |F_s\rangle e_i + |F_u\rangle e_f + |F_t\rangle e_\pi$$

- If no form factors, i.e. $f_x = 1$,

$$C^\mu \to 0, \quad M^\mu_c \to -g_\pi \gamma_5 (1 - \lambda) \frac{\gamma^\mu}{2m} e_\pi \quad \text{(Kroll-Ruderman term)}$$
Application

\[M^\mu = |F\rangle S J^\mu + B^\mu + X G_0 B_T^\mu \]

\[M^\mu = |F\rangle S \tilde{J}_s^\mu + B^\mu + T G_0 B_T^\mu \]

\[B^\mu = M_u^\mu + M_t^\mu + M_c^\mu \]

\[J^\mu = \tilde{J}_s^\mu + \langle F | G_0 B_T^\mu \]

\[\tilde{J}_s^\mu = J_0^\mu + \langle m_{KR}^\mu | G_0 | F \rangle + \langle f | G_0 B_L^\mu \]

\(\tilde{J}_s^\mu \): minimal current. For more details, see:
H. Haberzettl, F. Huang, and K. Nakayama, arXiv:1103.2065
Results: $d\sigma/d\Omega \ & \Sigma_\gamma$ for $\gamma + p \rightarrow \pi^+ + n$

Differential cross sections for $\gamma + p \rightarrow \pi^+ + n$

Photon spin asymmetries for $\gamma + p \rightarrow \pi^+ + n$

$s_{11}(1535), \ s_{11}(1650), \ s_{31}(1620), \ p_{31}(1910), \ p_{13}(1720), \ d_{13}(1520), \ p_{33}(1232), \ d_{33}(1700)$
Results: $d\sigma/d\Omega & \Sigma_\gamma$ for $\gamma + p \rightarrow \pi^0 + p$

Differential cross sections for $\gamma + p \rightarrow \pi^0 + p$

Photon spin asymmetries for $\gamma + p \rightarrow \pi^0 + p$

$S_{11} (1535), S_{11} (1650), S_{31} (1620), P_{31} (1910), P_{13} (1720), D_{13} (1520), P_{33} (1232), D_{33} (1700)$

The George-Washington University, USA

Pion photoproduction

May 23, 2011
Results: $d\sigma/d\Omega \& \Sigma_{\gamma}$ for $\gamma + n \rightarrow \pi^- + p$

Differential cross sections for $\gamma + n \rightarrow \pi^- + p$

Photon spin asymmetries for $\gamma + n \rightarrow \pi^- + p$

$S_{11} (1535), S_{11} (1650), S_{31} (1620), P_{31} (1910), P_{13} (1720), D_{13} (1520), P_{33} (1232), D_{33} (1700)$
Contribution from the loop integral is important

The terms apart from the Kroll-Ruderman term in M^μ_c give significant effects

⇒ keeping gauge invariance is important
$\gamma N \rightarrow \pi N$ total cross sections

- $\gamma p \rightarrow \pi^+ n$:
 - Full calculation
 - No loop integral
 - No M^{μ}_c apart from Kroll-Ruderman term

- $\gamma p \rightarrow \pi^0 p$:
 - Data not included in the fit
 - Contribution from the loop integral is important

- $\gamma n \rightarrow \pi^- p$:
 - Effect of the terms apart from Kroll-Ruderman term in M^{μ}_c is significant for $\gamma p \rightarrow \pi^+ n$
 - For $\gamma p \rightarrow \pi^0 p$, the effect of M^{μ}_c on $d\sigma/d\omega$ is largely suppressed at backward angles by $\sin \theta$
Multipole amplitudes

- SAID’s PWA not included in the fit

- $I = 1/2$:
 - E_{0+}: $S_{11}(1535), S_{11}(1650)$
 - M_{1-}: $P_{11}(1440)$
 - E_{1+}: $P_{13}(1720)$

- $I = 3/2$:
 - M_{1+}: $P_{33}(1232)$
 - E_{1+}: $P_{33}(1232)$
 - M_{1-}: $P_{31}(1910)$

- More data needed in the fit for further constraints
Target asymmetries for $\gamma + p \rightarrow \pi^+ + n$

Data are not included in the fit

Good at low energies

More partial waves needed

$J = 5/2$: E_{2+}, M_{2+}

More channels needed

$\Lambda K, \Sigma K$, et al.
Summary & perspectives

- Jülich dynamical coupled-channels model
 - $\pi N \oplus \eta N \oplus \pi \Delta \oplus \rho N \oplus \sigma N$ (version 2002)
 - Wess & Zumino chiral Lagrangian + $\Delta, \omega, \eta, a_0, \sigma$
 - $S_{11}(1535), S_{11}(1650), S_{31}(1620), P_{31}(1910), P_{13}(1720), D_{13}(1520), P_{33}(1232), D_{33}(1700)$
 - $\pi N \rightarrow \pi N$ scattering described successfully

- π photoproduction
 - Field-theoretical approach
 - Gauge invariance strictly respected
 - $d\sigma/d\Omega$ & Σ_γ described well up to 1.65 GeV
 - Loop integral & M^μ_c (apart from K.R.) are important

- Next step work:
 - Resonances’ electromagnetic couplings
 - High spin resonances
 - $\Lambda K, \Sigma K$ & ωN channels
 - Photoproduction of η, K, ω
 - Electroproduction
Covariance & 3-D integral equation

- Jülich πN model — TOPT

\[
T_{\text{TO}}(p', p; \sqrt{s}) = V_{\text{TO}}(p', p; \sqrt{s}) + \int d^3p'' \ V_{\text{TO}}(p', p''; \sqrt{s}) \ G_{\text{TO}}(p'', \sqrt{s}) T_{\text{TO}}(p'', p; \sqrt{s})
\]

\[
G_{\text{TO}}(p'', \sqrt{s}) = \frac{1}{\sqrt{s - E(p'') - \omega(p'')} + i0}
\]

- Converting to a covariant 3-D reduction like equation

\[
V(p', p; \sqrt{s}) \equiv (2\pi)^3 \sqrt{2E(p')} 2\omega(p') \sqrt{2E(p)} 2\omega(p) \ V_{\text{TO}}(p', p; \sqrt{s})
\]

\[
T(p', p; \sqrt{s}) \equiv (2\pi)^3 \sqrt{2E(p')} 2\omega(p') \sqrt{2E(p)} 2\omega(p) \ T_{\text{TO}}(p', p; \sqrt{s})
\]

\[
T(p', p; \sqrt{s}) = V(p', p; \sqrt{s}) + \int \frac{d^3p''}{(2\pi)^3} \ V(p', p''; \sqrt{s}) \ G_0(p'', \sqrt{s}) T(p'', p; \sqrt{s})
\]

\[
G_0(p'', \sqrt{s}) \equiv \frac{1}{2E(p'')} 2\omega(p'') \sqrt{s - E(p'') - \omega(p'')} + i0
\]

- Similarly, make 3-D reduction of the covariant photoproduction equation